Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Rosowski, Marcin"
Sort by:
The influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluene
This paper describes the influence of the chain length and the functional group steric accessibility of thiols modifiers on the phase transfer process efficiency of water synthesized gold nanoparticles (AuNPs) to toluene. The following thiols were tested: 1-decanethiol, 1,1-dimethyldecanethiol, 1-dodecanethiol, 1-tetradecanethiol and 1-oktadecanethiol. Nanoparticles (NPs) synthesized in water were precisely characterized before the phase transfer process using Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). The optical properties of AuNPs before and after the phase transfer were studied by the UV-Vis spectroscopy. Additionally, the particle size and size distribution before and after the phase transfer of nanoparticles were investigated using Dynamic Light Scattering (DLS). It turned out that the modification of NPs surface was not effective in the case of 1,1-dimethyldecanethiol, probably because of the difficult steric accessibility of the thiol functional group to NPs surface. Consequently, the effective phase transfer of AuNPs from water to toluene did not occur. In toluene the most stable were nanoparticles modified with 1-decanethiol, 1-dodecanethiol and 1-tetradecanethiol.
Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix
In electronic devices based on hybrid materials such as nonvolatile memory elements (NVMEs), it is essential to control precisely the dispersion of metallic nanoparticles (NPs) in an insulating polymer matrix such as polystyrene in order to control the functionality of the device. In this work the incorporation of AuNPs in polystyrene films is controlled by tuning the surface functionalization of the metallic nanoparticles via ligand exchange. Two ligands with different structures were used for functionalization: 1-decanethiol and thiol-terminated polystyrene. This paper presents a versatile method for the modification of gold nanoparticles (AuNPs) with thiol-terminated polystyrene ligands via phase transfer process. An organic colloid of AuNPs ( 5 ± 1 nm diameter) is obtained by the phase transfer process (from water to toluene) that allows exchanging the ligand adsorbed on AuNPs surface (hydrophilic citrate/tannic acid to hydrophobic thiols). The stability, size distribution, and precise location of modified AuNPs in the polymer matrix are obtained from UV-Vis spectroscopy, dynamic light scattering (DLS), and electron tomography. TEM tomographic 3D imaging demonstrates that the modification of AuNPs with thiol-terminated polystyrene results in homogeneous particle distribution in the polystyrene matrix compared to 1-decanethiol modified AuNPs for which a vertical phase separation with a homogeneous layer of AuNPs located at the bottom of the polymer matrix was observed.
Bioactive Modified Non-Wovens as a Novel Approach of Plants Protection against Invasive Slugs
Invasive slugs generate significant problems in the area of horticultural and agricultural production. Despite the multitude of methods to reduce the pest population, including preventive, mechanical, agrotechnical, cultivation, biological, and chemical treatments, no effective plant protection strategy has been developed so far. In this paper, a solution based on modified non-woven fabric with bioactive molluscicidal properties using the extract of tansy flower, metaldehyde, and abamectin (Vertigo® 018 EC) was proposed. All modified mats show significant anti-slug properties in comparison to control, and molluscicidal properties depend on the type of active substance. Non-woven modified with commonly used metaldehyde demonstrated fast action against slugs and presents the highest efficiency. The effectiveness of non-woven mats with Vertigo® 018 EC is lower than for the mats with metaldehyde but higher than for the mats modified with tansy flower extract. The proposed solution will enable removing and neutralization of molluscicide from the fields, after the efficient pest control, according to circular economy principles. Moreover, it may allow for better control of the molluscicide release to the environment in comparison to widely used pellets, and contribute to the virtual protection of plants against invasive slugs.
Microstructures Manufactured in Diamond by Use of Laser Micromachining
Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition—MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings (“hatch spacing”) (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm−1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase.