Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
89
result(s) for
"Rost, Natalia S"
Sort by:
A human memory circuit derived from brain lesions causing amnesia
2019
Human memory is thought to depend on a circuit of connected brain regions, but this hypothesis has not been directly tested. We derive a human memory circuit using 53 case reports of strokes causing amnesia and a map of the human connectome (
n
= 1000). This circuit is reproducible across discovery (
n
= 27) and replication (
n
= 26) cohorts and specific to lesions causing amnesia. Its hub is at the junction of the presubiculum and retrosplenial cortex. Connectivity with this single location defines a human brain circuit that incorporates > 95% of lesions causing amnesia. Lesion intersection with this circuit predicts memory scores in two independent datasets (N1 = 97, N2 = 176). This network aligns with neuroimaging correlates of episodic memory, abnormalities in Alzheimer’s disease, and brain stimulation sites reported to enhance memory in humans.
Memory is hypothesised to depend on different brain regions that interact in a network. Here, the authors use case studies of stroke patients with amnesia from the literature to identify brain regions that are part of this network.
Journal Article
Lesions causing hallucinations localize to one common brain network
2021
The brain regions responsible for hallucinations remain unclear. We studied 89 brain lesions causing hallucinations using a recently validated technique termed lesion network mapping. We found that hallucinations occurred following lesions to a variety of different brain regions, but these lesion locations fell within a single functionally connected brain network. This network was defined by connectivity to the cerebellar vermis, inferior cerebellum (bilateral lobule X), and the right superior temporal sulcus. Within this single hallucination network, additional connections with the lesion location dictated the sensory modality of the hallucination: lesions causing visual hallucinations were connected to the lateral geniculate nucleus in the thalamus while lesions causing auditory hallucinations were connected to the dentate nucleus in the cerebellum. Our results suggest that lesions causing hallucinations localize to a single common brain network, but additional connections within this network dictate the sensory modality, lending insight into the causal neuroanatomical substrate of hallucinations.
Journal Article
In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core
by
Copen, William A.
,
Wu, Ona
,
Yoo, Albert J.
in
Acute Disease
,
Analysis
,
Biology and Life Sciences
2017
Neuroimaging may guide acute stroke treatment by measuring the volume of brain tissue in the irreversibly injured \"ischemic core.\" The most widely accepted core volume measurement technique is diffusion-weighted MRI (DWI). However, some claim that measuring regional cerebral blood flow (CBF) with CT perfusion imaging (CTP), and labeling tissue below some threshold as the core, provides equivalent estimates. We tested whether any threshold allows reliable substitution of CBF for DWI.
58 patients with suspected stroke underwent DWI and CTP within six hours of symptom onset. A neuroradiologist outlined DWI lesions. In CBF maps, core pixels were defined by thresholds ranging from 0%-100% of normal, in 1% increments. Replicating prior studies, we used receiver operating characteristic (ROC) curves to select thresholds that optimized sensitivity and specificity in predicting DWI-positive pixels, first using only pixels on the side of the brain where infarction was clinically suspected (\"unilateral\" method), then including both sides (\"bilateral\"). We quantified each method and threshold's accuracy in estimating DWI volumes, using sums of squared errors (SSE). For the 23 patients with follow-up studies, we assessed whether CBF-derived volumes inaccurately exceeded follow-up infarct volumes.
The areas under the ROC curves were 0.89 (unilateral) and 0.90 (bilateral). Various metrics selected optimum CBF thresholds ranging from 29%-32%, with sensitivities of 0.79-0.81, and specificities of 0.83-0.85. However, for the unilateral and bilateral methods respectively, volume estimates derived from all CBF thresholds above 28% and 22% were less accurate than disregarding imaging and presuming every patient's core volume to be zero. The unilateral method with a 30% threshold, which recent clinical trials have employed, produced a mean core overestimation of 65 mL (range: -82-191), and exceeded follow-up volumes for 83% of patients, by up to 191 mL.
CTP-derived CBF maps cannot substitute for DWI in measuring the ischemic core.
Journal Article
Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration
by
Ingrisch, Michael
,
Rost, Natalia S.
,
Adams, Hieab
in
Cerebrovascular disease
,
Dementia
,
Magnetic resonance imaging
2019
Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease.
Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis.
A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository.
The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
Journal Article
Matrix Gla protein polymorphism rs1800801 associates with recurrence of ischemic stroke
by
Schirmer, Clemens M.
,
Zand, Ramin
,
Kolinovsky, Amy N.
in
Aged
,
Aged, 80 and over
,
Biology and Life Sciences
2020
The MGP single nucleotide polymorphism (SNP) rs1800801 has previously been associated with recurrent ischemic stroke in a Spanish cohort. Here, we tested for association of this SNP with ischemic stroke recurrence in a North American Caucasian cohort. Acute ischemic stroke patients admitted between 10/2009 and 12/2016 at three hospitals within a large healthcare system in the northeastern United States that were enrolled in a healthcare system-wide exome sequencing program were retrospectively reviewed. Patients with recurrent stroke within 1 year after index event were compared to those without recurrence. Of 9,348 suspected acute ischemic strokes admitted between 10/2009 and 12/2016, 1,727 (18.5%) enrolled in the exome-sequencing program. Among those, 1,068 patients had exome sequencing completed and were eligible for inclusion. Recurrent stroke within the first year of stroke was observed in 79 patients (7.4%). In multivariable analysis, stroke prior to the index stroke (OR 9.694, 95% CI 5.793-16.224, p ≤ 0.001), pro-coagulant status (OR = 3.563, 95% CI 1.504-8.443, p = 0.004) and the AA genotype of SNP rs1800801 (OR = 2.408, 95% CI 1.079-4.389, p = 0.004) were independently associated with recurrent stroke within the first year. The AA genotype of the MGP SNP rs1800801 is associated with recurrence within the first year after ischemic stroke in North American Caucasians. Study of stroke subtypes and additional populations will be required to determine if incorporation of allelic status at this SNP into current risk scores improves prediction of recurrent ischemic stroke.
Journal Article
Bayesian stroke modeling details sex biases in the white matter substrates of aphasia
2023
Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1401 patients, we isolate data-led representations of anatomical lesion patterns and hand-tailor a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ~3 months after stroke. We locate lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide.
Bayesian modeling of anatomical lesion patterns and clinical language outcomes in a cohort of 1401 stroke patients identifies sex-biased lesion-outcome effects after stroke.
Journal Article
Network structural dependency in the human connectome across the life-span
2019
Principles of network topology have been widely studied in the human connectome. Of particular interest is the modularity of the human brain, where the connectome is divided into subnetworks from which changes with development, aging or disease can be investigated. We present a weighted network measure, the Network Dependency Index (NDI), to identify an individual region’s importance to the global functioning of the network. Importantly, we utilize NDI to differentiate four subnetworks (Tiers) in the human connectome following Gaussian mixture model fitting. We analyze the topological aspects of each subnetwork with respect to age and compare it to rich club-based subnetworks (rich club, feeder, and seeder). Our results first demonstrate the efficacy of NDI to identify more consistent, central nodes of the connectome across age groups, when compared with the rich club framework. Stratifying the connectome by NDI led to consistent subnetworks across the
life-span, revealing distinct patterns associated with age where, for example, the key relay nuclei and cortical regions are contained in a subnetwork with highest NDI. The divisions of the human connectome derived from our data-driven NDI framework have the potential to reveal topological alterations described by network measures through the life-span.
Journal Article
Risk of Thromboembolism Following Acute Intracerebral Hemorrhage
by
Wendell, Lauren
,
FitzMaurice, Emilie
,
Goldstein, Joshua N.
in
Aged
,
Aged, 80 and over
,
Anticoagulants
2009
Introduction
Intracerebral hemorrhage (ICH) is the most feared complication of oral anticoagulant therapy (OAT). While anticoagulated patients have increased severity of bleeding following ICH, they may also be at increased risk for thromboembolic events (TEs) given that they had been prescribed OAT prior to their ICH. We hypothesized that TEs are relatively common following ICH, and that anticoagulated patients are at higher risk for these complications.
Methods
Consecutive patients with primary ICH presenting to a tertiary care hospital from 1994 to 2006 were prospectively characterized and followed. Hospital records were retrospectively reviewed for clinically relevant in-hospital TEs and patients were prospectively followed for 90 day mortality.
Results
For 988 patients of whom 218 (22%) were on OAT at presentation, median hospital length of stay was 7 (IQR 4–13) days and 90-day mortality was 36%. TEs were diagnosed in 71 patients (7.2%) including pulmonary embolism (1.8%), deep venous thrombosis (1.1%), myocardial ischemia (1.6%), and cerebrovascular ischemia (3.0%). Mean time to event was 8.4 ± 7.0 days. Rates of TE were 5% among those with OAT-related ICH and 8% among those with non-OAT ICH (
P
= 0.2). After multivariable Cox regression, the only independent risk factor for developing a TE was external ventricular drain placement (HR 2.1, 95% CI 1.1–4.1,
P
= 0.03). TEs had no effect on 90-day mortality (HR 0.7, 95% CI 0.5–1.1,
P
= 0.1).
Conclusions
The incidence of TEs in an unselected ICH population was 7.2%. Patients with OAT-related ICH were not at increased risk of TEs.
Journal Article
Outcome after acute ischemic stroke is linked to sex-specific lesion patterns
by
Slowik, Agnieszka
,
Roquer, Jaume
,
Nardin, Marco J.
in
59/57
,
692/617/375/534
,
692/698/1688/64
2021
Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.
Acute ischemic stroke impacts men and women differently. Here, the authors show how different lesion patterns in men and women are linked to the extent of stroke severity.
Journal Article
Principles of precision medicine in stroke
by
Arenillas, Juan F
,
Liebeskind, David S
,
Hinman, Jason D
in
Big Data
,
Clinical trials
,
Data collection
2017
The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health.
Journal Article