Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Rouau, X"
Sort by:
FTIR and Raman Signatures of Wheat Grain Peripheral Tissues
Hand-dissection of mature grains from three common wheat cultivars (Triticum aestivum L.: Caphorn, Crousty, and Recital) and one durum wheat (T. durum Desf., Ardente) was performed to obtain pure samples of aleurone layer, hyaline layer, outer pericarp, and a composite layer made up of testa+inner pericarp. Vibrational spectral signatures were collected on both sides of the layers by ATR-FTIR and Raman spectroscopy. Spectra were compared with biochemical analysis on the same samples which allowed identification of specific composition patterns in each tissue regardless of the cultivar. Considering the low penetration depth of ATR-FTIR signal, the cuticles were evidenced on the external sides of outer pericarp, hyaline layer, and testa. Spectra from testa of red and white wheats were clearly distinguished. FTIR spectroscopy, combined with statistical analysis, was successful in identifying the specific spectral signature for each peripheral tissue of wheat grains. In the 1500-800 cm-1 spectral region, multivariate models allowed accurate prediction of the histological origin of the pericarp, hyaline, and aleurone layers regardless of the analyzed side, and the testa but with a lower performance.
FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness
Endosperm cell walls of cultivars of wheat (Triticum aestivum L.) selected for their endosperm texture (two soft and two hard) were analysed in situ by Fourier transform infrared (FTIR) microspectroscopy. FTIR imaging coupled with statistical analysis was used to map the compositional and structural heterogeneity within transverse sections from which cell contents had been removed by sonication. In the majority of grains analysed, two distinct populations of endosperm cells could be identified by spectral features that were related to cell morphology and age, regardless of cultivar. The main cell-wall component responsible for these differences was the polysaccharide arabinoxylan. In a few samples, this heterogeneity was absent, for reasons that are not understood, but this was not correlated to endosperm texture or growth conditions. Within the same population of endosperm cells, cell walls of hard endosperm could be distinguished from those of soft endosperm by their spectral features. Compared to hard cultivars, the peripheral endosperm of soft cultivars was characterised by a higher amount of polymer, whose spectral feature was similar to water-extractable arabinoxylan. In constrast, no specific compound has been identified in the central endosperm: structural differences within the polysaccharides probably contribute to the distinction between hard and soft cultivars. In developing grain, a clear difference in the composition of the endosperm cell walls of hard and soft wheat cultivars was observed as early as 15 days after anthesis.
Automated assay for screening the enzymatic release of reducing sugars from micronized biomass
Background To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass ( i.e ., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps. Results We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of \"substrate plates\". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature) were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes. Conclusions Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the robot can autonomously process 120 triplicate wheat-straw samples per day. This throughput can be doubled if the incubation time is reduced from 24 h to 4 h (for initial rates measurements, for instance). This method can potentially be used with any insoluble substrate that is micronizable. A video illustrating the method can be seen at the following URL: http://www.youtube.com/watch?v=NFg6TxjuMWU
Estimation of Wheat Grain Tissue Cohesion via Laser Induced Breakdown Spectroscopy
During the wheat milling process, the bran fractionation is related to its mechanical properties, which are measured using tensile tests on hand-isolated tissues. However, the dissection of wheat tissues implies a soaking stage in water that can modify tissue properties. New methodologies are required to evaluate wheat tissue properties directly on native grains. The aim of this work was to estimate wheat grain tissue cohesion by the ionization effectiveness via laser-induced breakdown spectroscopy (LIBS) technique. Isolated bran tissues and wheat grains were submitted to LIBS analysis using a pulsed argon fluoride (193 nm, 15 ns, 1 Hz, 2 J cm −2 ) excimer laser and a compact optic fiber spectrometer (HR2000). The first approach was to correlate the ratios of ionic to atomic emission lines (MgII/MgI and CaII/CaI) of isolated tissues to their mechanical measurements. The energy needed to rupture the tissue was correlated to MgII/MgI ( R 2  = 0.72). Secondly, native grains were irradiated and chemometrics was applied to discriminate tissue spectra. The aleurone layer isolated after the soaking step presented a higher MgII/MgI than the aleurone layer from native grains, indicating a possible water effect on the tissue cohesion. In conclusion, the LIBS technique may be a potential method for rapid structural analysis of vegetal material allowing wheat population screening of both compositional and mechanical properties.
Influence of UV Exposure on Phenolic Acid Content, Mechanical Properties of Bran, and Milling Behavior of Durum Wheat (Triticum Durum Desf.)
Durum wheat bran was exposed to UV radiation up to 48 hr and the changes in ferulic acid (FA) content in the peripheral part s of grain were measured. The treatment resulted in a 25% decrease in FA monomer and a 44% decrease in dehydrodiferulic acid (DHD) ester-linked to the cell-wall arabinoxylans. This reduction was partly explained by a significant increase of FA (30%) and DHD (36%) engaged in hot alkali-labile linkages. The results suggest that UV irradiation induced the formation of new cross-links between feruloylated arabinoxylan and lignin in the pericarp. The effects of UV treatment on bran mechanical properties and wheat milling behavior were investigated. UV irradiation for 15 hr increased the stress to rupture by 30% and decreased the extensibility of bran tissues by 54%. This stiffening was associated with an increase in bran friability during grinding. Although this effect was due in part to the hydrothermal history of the grain, chemical modification induced by UV significantly influenced the size reduction of bran particles, which can be explained by the modification of the mechanical properties of bran. Relationships between the organization of cell-wall polymers, the mechanical properties of tissues, and the behavior of wheat grain during milling were investigated.