Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Rousi, Matti"
Sort by:
Insect herbivory dampens Subarctic birch forest C sink response to warming
Climate warming is anticipated to make high latitude ecosystems stronger C sinks through increasing plant production. This effect might, however, be dampened by insect herbivores whose damage to plants at their background, non-outbreak densities may more than double under climate warming. Here, using an open-air warming experiment among Subarctic birch forest field layer vegetation, supplemented with birch plantlets, we show that a 2.3 °C air and 1.2 °C soil temperature increase can advance the growing season by 1–4 days, enhance soil N availability, leaf chlorophyll concentrations and plant growth up to 400%, 160% and 50% respectively, and lead up to 122% greater ecosystem CO 2 uptake potential. However, comparable positive effects are also found when insect herbivory is reduced, and the effect of warming on C sink potential is intensified under reduced herbivory. Our results confirm the expected warming-induced increase in high latitude plant growth and CO 2 uptake, but also reveal that herbivorous insects may significantly dampen the strengthening of the CO 2 sink under climate warming. Warming is expected to increase C sink capacity in high-latitude ecosystems, but plant-herbivore interactions could moderate or offset this effect. Here, Silfver and colleagues test individual and interactive effects of warming and insect herbivory in a field experiment in Subarctic forest, showing that even low intensity insect herbivory strongly reduces C sink potential.
Genotypic traits and tradeoffs of fast growth in silver birch, a pioneer tree
Fast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using ¹⁵N-labelled pulse of NH₄⁺. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.
Genotype × Herbivore Effect on Leaf Litter Decomposition in Betula Pendula Saplings: Ecological and Evolutionary Consequences and the Role of Secondary Metabolites
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible.
Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula)
Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, . Broad-sense heritability ( ) and coefficient of genotypic variation ( ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation and for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.
Genotypic variation in yellow autumn leaf colours explains aphid load in silver birch
• It has been suggested that autumn‐migrating insects drive the evolution of autumn leaf colours. However, evidence of genetic variation in autumn leaf colours in natural tree populations and the link between the genetic variation and herbivore abundances has been lacking. • Here, we measured the size of the whole aphid community and the development of green–yellow leaf colours in six replicate trees of 19 silver birch (Betula pendula) genotypes at the beginning, in the middle and at the end of autumn colouration. We also calculated the difference between green leaf and leaf litter nitrogen (N) and estimated the changes in phloem sap N loading. • Autumn leaf colouration had significant genetic variation. During the last survey, genotypes that expressed the strongest leaf reflectance 2–4 wk earlier had an abundance of egg‐laying Euceraphis betulae females. Surprisingly, the aphid community size during the first surveys explained N loss by the litter of different birch genotypes. • Our results are the first evidence at the tree intrapopulation genotypic level that autumn‐migrating pests have the potential to drive the evolution of autumn leaf colours. They also stress the importance of recognizing the role of late‐season tree–insect interactions in the evolution of herbivory resistance.
Colonization of a host tree by herbivorous insects under a changing climate
Climate warming has been predicted to increase the abundance of herbivorous insects. Together with concurrent poleward shifts in many insect species this may increase herbivore pressure on plants. However, the manner in which plants at higher latitudes become colonized by herbivorous insects in the future is unknown. We established a translocation experiment using 26 micropropagated silver birch Betula pendula genotypes from six populations originating from 60°N to 67°N, to study the susceptibility of the translocated birches to local herbivores. The birches were planted at three different latitudes in Finland (60°N, 62°N and 67°N). We studied the effect of source population and latitudinal translocation on herbivore density, species richness, and community composition among the genotypes growing in the same environmental conditions in two years; 2011 and 2012. The source population explained the variation in the herbivore density only in 2012, whereas latitudinal translocation did not affect herbivore density. Variation in species richness was not explained by the source population or by the latitudinal translocation. At two of the study sites, the similarity of the herbivore communities among the populations decreased with increasing latitudinal distance of the source populations, possibly because birch populations that grow geographically closer to each other are genetically more similar, and therefore support a more similar composition of the arthropod community. All birch genotypes were colonized by local herbivores, suggesting that as herbivores shift their ranges polewards, they are able to colonize novel host‐plant genotypes. This enables compositional changes in insect communities on their host plants in the future, which in turn, might affect total herbivory and eventually, plant growth.
Strong Interactive Effects of Warming and Insect Herbivory on Soil Carbon and Nitrogen Dynamics at Subarctic Tree Line
Warming will likely stimulate Arctic primary production, but also soil C and N mineralization, and it remains uncertain whether the Arctic will become a sink or a source for CO 2 . Increasing insect herbivory may also dampen the positive response of plant production and soil C input to warming. We conducted an open-air warming experiment with Subarctic field layer vegetation in North Finland to explore the effects of warming (+3°C) and reduced insect herbivory (67% reduction in leaf damage using an insecticide) on soil C and N dynamics. We found that plant root growth, soil C and N concentrations, microbial biomass C, microbial activity, and soil NH 4 + availability were increased by both warming and reduced herbivory when applied alone, but not when combined. Soil NO 3 – availability increased by warming only and in-situ soil respiration by reduced herbivory only. Our results suggest that increasing C input from vegetation under climate warming increases soil C concentration, but also stimulates soil C turnover. On the other hand, it appears that insect herbivores can significantly reduce plant growth. If their abundance increases with warming as predicted, they may curtail the positive effect of warming on soil C concentration. Moreover, our results suggest that temperature and herbivory effects on root growth and soil variables interact strongly, which probably arises from a combination of N demand increasing under lower herbivory and soil mineral N supply increasing under higher temperature. This may further complicate the effects of rising temperatures on Subarctic soil C dynamics.
Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population v1; ref status: indexed, http://f1000r.es/2pd
A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22 Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes. B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure. B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in B. pendula forest ecosystems.
Interactive Effect of Springtime Frost and Elevated Ozone on Early Growth, Foliar Injuries and Leaf Structure of Birch (Betula pendula)
• Impacts of ozone and late frost on six birch (Betula pendula) genotypes from south-eastern Finland were studied in an 8-wk chamber experiment. • The plants were measured for bud burst, growth, visible foliar injuries caused by ozone and frost, structural leaf properties and changes in chloroplasts. • Ozone delayed bud burst but stimulated subsequent growth. Acute frost injuries were compensated by increased leaf production. Early bud burst predisposed to frost damage, whereas late bud burst increased the vulnerability to ozone. In combined ozone + frost treatment, freezing reduced visible ozone injuries, counteracted ozone-induced growth enhancement and stomatal changes, and exacerbated ozone-caused reduction in palisade cell, chloroplast and starch grain size. Rapid changes in epidermal cell differentiation towards stomata and/or glandular trichomes occurred to enhance ozone/frost tolerance. • The results showed large genetic variation within birch population in response to frost and ozone. Generally, birch seem to recover from acute frost occurrence efficiently through compensating leaf production, but co-occurring ozone enhancement may disturb the recovery processes mechanistically through structural damage in photosynthetic tissue, especially in chloroplasts.
Mountain birch facilitates Scots pine in the northern tree line – does improved soil fertility have a role?
Background and aims Facilitative plant-plant interactions are common in harsh environments such as Arctic and alpine tree lines. In Fennoscandia, mountain birch dominates tree lines, but mixes with Scots pine in less severe areas. Using over 30-yr. old Scots pine common gardens, established at three locations near the present Scots pine tree line, we tested (1) if mountain birch can facilitate Scots pine numbers and (2) if improved soil fertility under mountain birch canopies has a role in facilitation. Methods We counted the number of pines within 1-m and 3-m radii of the tallest mountain birch vs. a random spot in 70–75 planting plots and sampled soil for nutrients at 0.3-, 1- and 3-m distance to the birch in ten plots in each location. Results Number of Scots pines was 29% higher within a 1-m radius of a mountain birch than of a random spot. This effect did not depend on location, although the locations differed significantly in soil fertility, and no effect was detected within a 3-m radius. Concentrations of water, NH4, NO3 and PO4 decreased significantly with increasing distance to a mountain birch, but only in the least fertile location. Conclusions Mountain birch can significantly facilitate Scots pine in tree line conditions. However, unlike we expected, improved soil fertility under birch canopies may not have a general role in facilitation.