Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,520
result(s) for
"Rovere, A."
Sort by:
Decoding the Interplay Between Tidal Notch Geometry and Sea‐Level Variability During the Last Interglacial (Marine Isotope Stage 5e) High Stand
2024
Relic coastal landforms (fossil corals, cemented intertidal deposits, or erosive features carved onto rock coasts) serve as sea‐level index points (SLIPs), that are widely used to reconstruct past sea‐level changes. Traditional SLIP‐based sea‐level reconstructions face challenges in capturing continuous sea‐level variability and dating erosional SLIPs, such as tidal notches. Here, we propose a novel approach to such challenges. We use a numerical model of cliff erosion embedded within a Monte Carlo simulation to investigate the most likely sea‐level scenarios responsible for shaping one of the best‐preserved tidal notches of Last Interglacial age in Sardinia, Italy. Results align with Glacial Isostatic Adjustment model predictions, indicating that synchronized or out‐of‐sync ice‐volume shifts in Antarctic and Greenland ice sheets can reproduce the notch morphology, with sea level confidently peaking at 6 m and only under a higher than present erosion regime. This new approach yields insight into sea‐level trends during the Last Interglacial. Plain Language Summary Scientists typically investigate the position of sea level in geological time using the elevation, age, and characteristics of fossil marine organisms living in shallow water (e.g., coral reefs), beach deposits, or erosional features that were formed near the sea level. However, these indicators offer only fragmented, if not only point‐like information in time and not a continuous sea‐level record. To overcome this issue, we use a numerical model that reconstructs the shape of tidal notches (i.e., indentations created close to sea level in carbonate cliffs). We compare model‐generated notch shapes with the real shape of the tidal notch, and we produce a set of continuous sea‐level histories that are more likely to have produced one of the best‐preserved fossil tidal notches in the Orosei Gulf, Sardinia, Italy, carved during the Last Interglacial highstand, 125.000 years ago. Our findings suggest that whether the ice sheets in Antarctica and Greenland melted at the same time or separately, both scenarios could reproduce the actual shape of the tidal notch we observe at present. Our findings indicate that the erosion rate during that period was higher than present and the sea level is very likely to have reached up to 6 m. Key Points Cliff erosion modeling and Monte Carlo analysis indicate tidal notch geometry can offer a continuous record of past sea level variability The geometry of Orosei’s tidal notch, Italy can be replicated through simultaneous or asynchronous Antarctic–Greenland ice melting scenarios The morphology of the Last Interglacial notch is more efficiently replicated using higher‐than‐present erosion rates and a 6 m sea‐level peak
Journal Article
Assessing the relative accuracy of coral heights reconstructed from drones and structure from motion photogrammetry on coral reefs
2022
Low-altitude high-resolution aerial photographs allow for the reconstruction of structural properties of shallow coral reefs and the quantification of their topographic complexity. This study shows the scope and limitations of two-media (air/water) Structure from Motion—Multi-View Stereo reconstruction method using drone aerial photographs to reconstruct coral height. We apply this method in nine different sites covering a total area of about 7000 m2, and we examine the suitability of the method to obtain topographic complexity estimates (i.e., seafloor rugosity). A simple refraction correction and survey design allowed reaching a root mean square error of 0.1 m for the generated digital models of the seafloor (without the refraction correction the root mean square error was 0.2 m). We find that the complexity of the seafloor extracted from the drone digital models is slightly underestimated compared to the one measured with a traditional in situ survey method.
Journal Article
Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing
2021
Extremely short, high-energy pulses are essential in modern ultrafast science. In a seminal paper in 19961, Nisoli and co-workers demonstrated the first intense pulse compression employing a gas-filled hollow-core fibre. Despite the huge body of scientific work on this technology stemming from ultrafast and attosecond research, here we identify an unexplored few-cycle visible-light generation mechanism, which relies on the nonlinear mixing of hollow-core fibre modes. Using a commercially available ytterbium laser, we generate 4.6 fs, 20 μJ pulses centred at around 600 nm (~2 cycles, ~4 GW peak power), ~40 times shorter than the input 175 fs, 1 mJ pulses at 1,035 nm. Our approach thus directly projects few-hundred-femtosecond-long infrared pulses into the single-cycle regime at visible frequencies, without the need for additional post-compression. As a powerful application of our findings, we present a compact, multicolour pump–probe set-up with a temporal resolution of a few optical cycles.Direct generation of few-cycle high-energy visible pulses is demonstrated via the nonlinear mixing of hollow-core fibre modes. Compression of near-infrared laser pulses by a factor of 40 with no additional dispersion compensation delivers 4.6 fs, 20 μJ pulses (~2 cycles, ~4 GW peak power) centred at around 600 nm.
Journal Article
Aluminum Surface Corrosion Behavior and Microstructural Evolution in Dissimilar AA6016-T4 Aluminum to DP600 Steel via Refill Friction Stir Spot Welding
by
Suhuddin, Uceu F. H.
,
Silva, Rodrigo da
,
Vacchi, Guilherme dos Santos
in
Alloy steels
,
Alloys
,
Aluminum
2025
Refill friction stir spot welding (refill FSSW) is a solid-state joining technique that enables dissimilar welding between aluminum and steel alloys with minimal intermetallic compound (IMC) formation. Previous studies have focused on the interfacial mechanical performance of such joints, limited attention has been given to the localized corrosion behavior of the aluminum surface after welding, particularly in relation to microstructural evolution. This study investigates the effect of refill FSSW on the localized corrosion resistance of the aluminum surface in dissimilar joints with DP600 steel, since the Al side is typically the exposed surface in automotive service conditions. Emphasis is placed on the correlation between microstructural changes induced by the welding thermal cycle, such as grain refinement and precipitate coarsening, and localized corrosion behavior. The welded samples were characterized by optical and scanning electron microscopy, Vickers hardness measurements and potentiodynamic polarization techniques. Corrosion tests revealed a slight reduction in corrosion resistance in the stir zone compared to the base metal, mainly attributed to Mg2Si coarsening. Pit initiation sites were associated with Al(Fe, Mn)Si and Mg2Si precipitates. These findings offer new insights into the corrosion mechanisms acting on the aluminum surface of refill FSSW joints, supporting the development of more corrosion-resistant dissimilar structures.
Journal Article
Multi-decadal shoreline changes in Eastern Ghana—natural dynamics versus human interventions
by
Jayson-Quashigah, P.-N
,
Westphal, H
,
Lassalle, B
in
Accretion
,
Anthropogenic factors
,
Beaches
2023
Human infrastructures, such as dams, seawalls, and ports, can affect both the sedimentary budget and nearshore hydrodynamics, enhancing and accelerating the loss or gain of coastal sediments. Understanding the processes and factors controlling beach morphodynamics is essential for implementing adequate adaptation strategies in coastal areas, particularly in those regions where coastal protection measures are scarce. This study analyzes shoreline changes in the Keta Municipal District, located in southeastern Ghana (West Africa). This area is characterized by the sedimentary input of the Volta River, forming a river delta situated to the west, i.e., updrift, of our study site. Following the construction of two dams (Akosombo and Kpong) on the Volta River in 1965 and 1982, groins and revetments have been built along the coast between 2005 and 2015 to reduce the high rates of coastal erosion in this area. Here, we explore the influence of these dams and the hard protection constructions on beach morphodynamics using historical maps and satellite images complemented by a shoreline survey undertaken with a differential GNSS in 2015. The multi-decadal evolution between 1913 and 2015 reconstructed for 90 km of shoreline suggests that local erosion rates in the region predate the construction of the two dams on the Volta River, indicating that these structures might not be the primary driver of coastal erosion in this area, as previously suggested. We emphasize that delta dynamics under conditions of high-energy longshore drift, modified by anthropogenic drivers such as sand mining, play a key role in the long-term evolution of this coast. Our results also show that the infrastructures built to halt coastal erosion result in localized erosion and accretion down-current along the coastline towards the border with Togo, highlighting the need for a transnational perspective in addressing the problems caused by coastal erosion.
Journal Article
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations
2012
Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea). Methods to infer the origin of boulder deposits (tsunami vs. storm wave) are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews) indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 Ms Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events.
Journal Article
Community composition predicts photogrammetry-based structural complexity on coral reefs
2020
The capacity of coral reefs to provide ecosystem services is directly related to their three-dimensional structural complexity. This parameter is also correlated with total fish biomass, reef resilience to external stresses and the dissipation of wave energy. However, information on structural complexity (i.e., reef rugosity) has not always been assessed in historical monitoring programs, and long-term trends are sometimes unavailable. In this study, we show that it is possible to predict and hindcast the three-dimensional complexity of coral reefs by combining photogrammetry, statistical modeling and historical benthic community data. We calibrated lasso generalized linear models and boosted regression trees to predict structural complexity from photogrammetry transects around Moorea (French Polynesia). Our models were able to predict structural complexity with high accuracy (cross-validated R2 ranges between 0.81 and 0.9). We then used our models to hindcast historical trends in 3D structural complexity using community composition data collected in Moorea from 2004 to 2017. The temporal analysis highlighted the severe impact of a crown-of-thorns (COTS) outbreak from 2006 to 2009 and Cyclone Oli in 2010. In conjunction, these two events reduce coral cover from ~ 50% to almost zero. While the collection of actual data is always to be preferred, our model captured these effects, confirming the capacity of this modeling technique to predict structural complexity on the basis of assemblage composition.
Journal Article
KEY RECENT EXPERIENCES IN THE APPLICATION OF SEA IN BRAZIL
by
PIRES, SILVIA HELENA MENEZES
,
SILVA, HELIANA VIELLA OLIVEIRA
,
LA ROVERE, EMILIO LÉBRE
in
Brazil
,
Coordination compounds
,
Decision making
2014
One of the requirements for a good Strategic Environmental Assessment (SEA) is its capacity to adjust itself to the planned decision-making process. This paper presents recent experiences involving the application of SEA in Brazil in three different contexts. In the first case, an SEA was conducted to meet a request of the Ministry of Tourism for information to prepare the Development Plan for Sustainable Tourism in the North Coast. The second case is an initiative undertaken by the Secretary of Environment of the State of Bahia for the construction of a seaport-industrial complex in the region of Ilhéus (Bahia). Finally, an SEA commissioned by a group of environmental NGOs to assess options for the development of a mining-metal and chemical-gas complex in the Pantanal Region near the Bolivian and Paraguayan border is presented. The paper highlights the differences in the contexts of the three studies (responsibilities in the decision-making process, stages of the planning process, etc.) as well as in their methodological approaches. Difficulties, gaps, advances and findings in each case are also analysed to assess the effectiveness of each SEA.
Journal Article
Last Interglacial sea-level proxies in the western Mediterranean
by
Rovere, Alessio
,
Fontana, Alessandro
,
Cerrone, Ciro
in
Coasts
,
Data points
,
Interglacial periods
2021
We describe a database of Last Interglacial (Marine Isotopic Stage 5) sea-level proxies for the western Mediterranean region. The database was compiled reviewing the information reported in 199 published studies and contains 396 sea-level data points (sea-level index points and marine- or terrestrial-limiting points) and 401 associated dated samples. The database follows the standardized WALIS template and is available as Cerrone et al. (2021b, https://doi.org/10.5281/zenodo.5341661).
Journal Article
Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (D. Don) Florín
2002
The effects of Pleistocene glaciations on the genetic characteristics of the most austral conifer in the world, Pilgerodendron uviferum, were analysed with specific reference to the hypothesis that the species persisted locally in ice-free areas in temperate South America. It was expected that genetic variation would decrease with latitude, given that ice fields were larger in southern Patagonia and thus refugia were probably located towards the northern distributional limit of the species as suggested by the fossil record. In addition, an increase in among-population genetic divergence was expected with increasing distance to putative glacial refugia. We examined the relationship between location and within-population variability indices of 20 Pilgerodendron populations derived from isozyme analyses. We analysed possible refugia hypotheses by the distribution of allele frequencies using multivariate discriminant analysis. The degree of genetic differentiation with geographical distance between all population pairs was investigated by Mantel tests. Results indicated that Pilgerodendron populations are highly monomorphic, probably reflecting past population bottlenecks and reduced gene flow. Southernmost populations tend to be the least genetically variable and were therefore probably more affected by glacial activity than northern ones. Populations located outside ice limits seem to have been isolated during the glacial period. The presence of centres of genetic diversity, together with the lack of a significant correlation between genetic and geographical distances and the absence of geographical patterns of allelic frequencies at most analysed alleles, may indicate that Pilgerodendron did not advance southward after the last glaciation from a unique northern refugium, but spread from several surviving populations in ice-free areas in Patagonia instead.
Journal Article