Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Rowden, Hope"
Sort by:
Epigenetic and transcriptional dysregulation in CD4+ T cells in patients with atopic dermatitis
by
Devonshire, Ashley L.
,
Weirauch, Matthew T.
,
Parameswaran, Sreeja
in
Atopic dermatitis
,
Binding sites
,
Biology and Life Sciences
2022
Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4
+
T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4
+
T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4
+
T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4
+
T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4
+
T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.
Journal Article
Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome
2024
Background
There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions.
Results
In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes:
MYC
(shared),
CXCR7
(type 1 specific), and
CD21
(type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks.
Conclusions
This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Journal Article
Epigenetic and Transcriptional Dysregulation in CD4+ T cells of Patients with Atopic Dermatitis
by
Parameswaran, Sreeja
,
Bernstein, David
,
Edsall, Lee
in
Atopic dermatitis
,
CD4 antigen
,
Chromatin
2021
Atopic dermatitis (AD) is one of the most common skin disorders in children. Disease etiology involves genetic and environmental factors, with the 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated epigenetic mechanisms that may account for genetic susceptibility in CD4+ T cells. To understand gene regulatory activity differences in peripheral blood T cells in AD, we measured chromatin accessibility (ATAC-seq), NFKB1 binding (ChIP-seq), and gene expression (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD and age-matched, non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of AD risk loci overlapping with AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NFkB DNA binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD-specific or Control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NFkB DNA binding motifs. Surprisingly, Control-specific NKFB1 ChIP-seq peaks were not enriched for NFKB1 motifs, instead containing motifs for other classes of human TFs, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of genotype-dependent chromatin accessibility at 36 AD risk variants (30% of AD risk loci) that could lead to genotype-dependent expression at these loci. We propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease and genotype-dependent chromatin accessibility involving NFKB binding. Competing Interest Statement The authors have declared no competing interest.