Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
81 result(s) for "Rowland, Mary M."
Sort by:
Investigating the use of pollen DNA metabarcoding to quantify bee foraging and effects of threshold selection
DNA metabarcoding of pollen is a useful tool for studying bee foraging ecology. However, several questions about this method remain unresolved, including the extent to which sequence read data is quantitative, which type of sequence count removal threshold to use and how that choice affects our ability to detect rare flower visits, and how sequence artefacts may confound conclusions about bee foraging behavior. To address these questions, we isolated pollen from five plant species and created treatments comprised of pollen from each species alone and combinations of pollen from multiple species that varied in richness and evenness. We used ITS2 and rbcL metabarcoding to identify plant species in the samples, compared the proportion of pollen by mass to the proportion of sequencing reads for each plant species in each treatment, and analyzed the sequencing data using both liberal and conservative thresholds. We collected pollen from foraging bees, analyzed metabarcoding data from those samples using each threshold, and compared the differences in the pollinator networks constructed from the data. Regardless of the threshold used, the relationship between the proportion of pollen by mass and sequencing reads was inconsistent, suggesting that the number of sequence reads is a poor proxy for pollen abundance in mixed-species samples. Using a liberal threshold resulted in greater detection of original plant species in mixtures but also detected additional species in mixtures and single-species samples. The conservative threshold reduced the number of additional plant species detected, but several species in mixtures were not detected above the threshold, resulting in false negatives. Pollinator networks produced using the two thresholds differed and illustrated tradeoffs between detection of rare species and estimation of network complexity. Threshold selection can have a major effect on conclusions drawn from studies using metabarcoding of bee pollen to study plant-pollinator interactions.
Behavioral changes and nutritional consequences to elk (Cervus canadensis) avoiding perceived risk from human hunters
The life‐and‐death stakes of predator–prey encounters justify the high price of many anti‐predator behaviors. In adopting these behaviors, prey incur substantial non‐consumptive costs that can have population‐level consequences. Because prey knowledge of risk is imperfect, individuals may even adopt these costly behaviors in the absence of a real threat. For example, rather than only avoid hunters, many species categorically avoid all anthropogenic activity. Although hunting seasons only increase risk for specific individuals (e.g., males), non‐target individuals may still perceive human hunters as a source of risk and respond accordingly. Here, we used a large‐scale experiment including 89 animal‐years of location data from 62 unique individuals over 6 yr to quantify the duration, magnitude, and energetic consequences of changes to movement and resource selection behavior adopted by non‐target female elk (Cervus canadensis) in response to human hunters during three separate experimental 5‐d hunts (elk archery, deer rifle (Odocoileus hemionus or Odocoileus virginianus), and elk rifle). We predicted that elk response to hunters would be brief, but that strong behavioral responses to hunters (e.g., strengthened avoidance of roads and trails) would carry nutritional costs. We measured the duration of hunt‐related changes in elk speed using quantile regression, further quantified the strength of elk behavioral responses to hunters using population‐level resource selection functions, and evaluated whether anti‐predator resource selection behavior translated to measurable metabolic costs in the form of reduced body fat heading into winter. Elk responses to human hunters were stronger in the day than at night and were generally more pronounced during the elk hunts than during deer hunts. During hunts, elk shifted their diurnal behavior to avoid forage and intensified their avoidance of roads and trails. The combination of these changes in behavior led to a predicted pattern of distribution during the hunt that differed substantially from the distribution prior to the hunt. Lactating females that more strongly avoided roads entered winter in poorer nutritional condition, suggesting that the changes in resource selection we describe carry corresponding nutritional costs that have the potential to impact subsequent population performance.
A seasonal pulse of ungulate neonates influences space use by carnivores in a multi‐predator, multi‐prey system
The behavioral mechanisms by which predators encounter prey are poorly resolved. In particular, the extent to which predators engage in active search for prey versus incidentally encountering them has not been well studied in many systems and particularly not for neonate prey during the birth pulse. Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation. Our study aims to determine how a suite of carnivores responds to the seasonal pulse of newborn ungulates using contemporaneous global positioning system (GPS) locations of four species of predators and two species of prey. We used step‐selection functions to assess whether coyotes, cougars, black bears, and bobcats encountered parturient adult female ungulates more often than expected by chance in a low‐density population of mule deer and a high‐density population of elk. We then assessed whether the carnivore species that encountered parturient prey more often than expected by chance did so by shifting their habitat use toward areas with a high probability of encountering neonates. None of the four carnivore species encountered GPS‐collared parturient mule deer more often than expected by chance. By contrast, we determined that cougar and male bear movements positioned them in the proximity of GPS‐collared parturient elk more often than expected by chance which may provide evidence of searching behavior. Although both male bears and cougars exhibited behavior consistent with active search for neonates, only male bears used elk parturition habitat in a way that dynamically tracked the phenology of the elk birth pulse suggesting that maximizing encounters with juvenile elk was a motivation when selecting resources. Our results suggest that there is high interspecific and intersexual variability in foraging strategies among large mammalian predators and their prey. Understanding the extent to which predators engage in active search for prey versus incidentally encountering them is important because active search can exert a stabilizing force on prey populations by alleviating predation pressure on low‐density prey and increasing it for high‐density prey. Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation. Our study aims to determine how a suite of carnivores responds to the seasonal pulse of newborn ungulates using contemporaneous GPS locations of four species of predators and two species of prey.
Variable strategies to solve risk–reward tradeoffs in carnivore communities
Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition. This was evident via the strong attraction of coyotes to cougar kill sites, frequent scavenging of cougar-killed prey, and coyote diets that nearly matched cougars in the magnitude of ungulate consumption. Yet coyotes were often killed by cougars and used space to minimize encounters, complicating the fitness benefits gained from scavenging. We estimated that 23% (95% CI: 8 to 55%) of the coyote population in our study area was killed by cougars annually, suggesting that coyote interactions with cougars are a complex behavioral game of risk and reward. In contrast, we found no indication that bobcat space use or diet was influenced by cougars. Black bears avoided cougars, but there was no evidence of attraction to cougar kill sites and much lower levels of ungulate consumption and carcass visitation than for coyotes. Interspecific interactions among carnivores are multifaceted, encompassing both suppression and facilitation.
Fire history influences large-herbivore behavior at circadian, seasonal, and successional scales
Recurrent environmental changes often prompt animals to alter their behavior leading to predictable patterns across a range of temporal scales. The nested nature of circadian and seasonal behavior complicates tests for effects of rarer disturbance events like fire. Fire can dramatically alter plant community structure, with important knock-on effects at higher trophic levels, but the strength and timing of fire’s effects on herbivores remain unclear. We combined prescribed fire treatments with fine-scale location data to quantify herbivore responses to fire across three temporal scales. Between 2001 and 2003, 26 stands of fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned; 27 similar stands were left untreated as experimental controls. Analyzing female elk (Cervus canadensis) locations across 21 yr (1996—2016), we found crepuscular, seasonal, and successional shifts in behavioral responses to fire. Elk displayed “commuting” behavior, avoiding burns during the day, but selecting them at night. Elk selection for burns was strongest in early summer and the relative probability of elk using burns peaked quickly (5 yr post burn) before gradually returning to pre-treatment levels (15 yr post burn). Our results demonstrate that fire history has complex, persistent effects on herbivore behavior, and suggest that herbivores benefit from heterogeneous landscapes containing a range of successional stages.
Evaluating and integrating spatial capture–recapture models with data of variable individual identifiability
Spatial capture–recapture (SCR) models have become the preferred tool for estimating densities of carnivores. Within this family of models are variants requiring identification of all individuals in each encounter (SCR), a subset of individuals only (generalized spatial mark–resight, gSMR), or no individual identification (spatial count or spatial presence– absence). Although each technique has been shown through simulation to yield unbiased results, the consistency and relative precision of estimates across methods in real-world settings are seldom considered. We tested a suite of models ranging from those only requiring detections of unmarked individuals to others that integrate remote camera, physical capture, genetic, and global positioning system (GPS) data into a hybrid model, to estimate population densities of black bears, bobcats, cougars, and coyotes. For each species, we genotyped fecal DNA collected with detection dogs during a 20-d period. A subset of individuals from each species was affixed with GPS collars bearing unique markings and resighted by remote cameras over 140 d contemporaneous with scat collection. Camera-based gSMR models produced density estimates that differed by <10% from genetic SCR for bears, cougars, and coyotes once important sources of variation (sex or behavioral status) were controlled for. For bobcats, SCR estimates were 33% higher than gSMR. The cause of the discrepancies in estimates was likely attributable to challenges designing a study compatible for species with disparate home range sizes and the difficulty of collecting sufficient data in a timeframe in which demographic closure could be assumed. Unmarked models estimated densities that varied greatly from SCR, but estimates became more consistent in models wherein more individuals were identifiable. Hybrid models containing all data sources exhibited the most precise estimates for all species. For studies in which only sparse data can be obtained and the strictest model assumptions are unlikely to be met, we suggest researchers use caution making inference from models lacking individual identity. For best results, we further recommend the use of methods requiring at least a subset of the population is marked and that multiple data sets are incorporated when possible.
Influence of Landscape Characteristics on Hunter Space Use and Success
Sport hunting of ungulates is a predominant recreational pursuit and the primary tool for managing their populations in North America and beyond, given its influence on ungulate distributions, social organization, and population performance. Similarly, land management, such as motorized vehicle access, influences ungulate distributions during and outside hunting seasons. Although research on ungulate responses to hunting and land use is widespread, knowledge gaps persist about space use of hunters and what landscape features discriminate among hunt types and between successful and unsuccessful hunters. We used telemetry location data from hunters (n = 341) to estimate space use from 2008–2013 during 3 types of controlled, 5-day hunts for antlered mule deer (Odocoileus hemionus) and elk (Cervus canadensis) in northeastern Oregon, USA: archery elk, rifle deer, and rifle elk. To evaluate space use, we developed utilization distributions for each hunter, created core areas (50% contours) for groups of hunters, and derived several metrics of space-use overlap between successful and unsuccessful hunters. We also modeled predictors of space use using resource utilization functions with beta regression and stepwise model building. Hunter space use was compressed, with even the largest core area (unsuccessful rifle elk hunters) encompassing <16% (1,178 ha) of the area. We found strong similarities in space use of rifle hunters compared to archers, and core areas of successful hunters were markedly smaller than those of unsuccessful hunters (e.g., x̄ = 104 ha vs. 681 ha, respectively, for archers). Percentage cover and distance from open roads were the most consistent covariates in the 6 final models (successful vs. unsuccessful for each of 3 hunts) but with different signs. For example, predicted use of archery and rifle elk hunters increased with cover but decreased for rifle deer hunters. Although the same covariates were in the final models for unsuccessful and successful rifle elk hunters, their negligible spatial overlap suggested they sought those features in different locales, a pattern also documented for rifle deer hunters. Our models performed well (Spearman’s rank correlation coefficients = 0.99 for 5 of 6 models), reflecting their utility for managing hunters and landscapes. Our results suggest that strategic management of open roads and forest cover can benefit managers seeking to balance hunter opportunity and satisfaction with harvest objectives, especially for species of special concern such as mule deer, and that differences in space use among hunter groups should be accounted for in hunting season designs.
Behavioral responses of male elk to hunting risk
Prey respond to predation risk with a range of behavioral tactics that can vary based on space use and hunting mode of the predator. Unlike other predators, human hunters are often more spatially and temporally restricted, which creates a period of short-duration, high-intensity predation risk for prey. Consequently, identifying the roles different hunting modes (i.e., archery and rifle), hunts for targeted and non-targeted species, and landscape features play in altering spatial and temporal responses of prey to predation risk by humans is important for effective management of harvested populations. From 2009 to 2016, we used a large-scale experiment including 50 animal-years of location data from 38 unique male elk (Cervus canadensis) to quantify changes in movement and resource selection in response to hunters during 3 separate 5-day controlled hunts for antlered males (elk archery, deer [Odocoileus spp.] rifle, and elk rifle) at the Starkey Experimental Forest and Range in northeast Oregon, USA. We evaluated competing hypotheses regarding elk responses to varying levels of prey risk posed by the different hunt types. We predicted that the strength of elk behavioral responses would increase with perceived hunter lethality (i.e., weak response to elk archery but similar response to elk and deer rifle hunts) and that prey response would be closely associated with hunter activity within the diel cycle (greater during diurnal than nocturnal hours) and across hunting seasons. Elk responses were strongest during diurnal hours when hunters were active on the landscape and were generally more pronounced during both rifle hunts than during the archery hunt (supporting our perceived lethality hypothesis). Male elk avoided open roads across all periods except during nocturnal hours of the breeding season and alternated between avoidance of areas with high canopy cover during nocturnal hours and selection during diurnal hours. In combination these patterns led to distinct distributional changes of male elk from pre-hunt to hunt periods. Patterns of male elk selection highlight the importance of managing for heterogeneous landscapes to meet a variety of habitat, harvest, hunter satisfaction, and escapement objectives.
Cattle grazing and fish recovery on US federal lands
In the western US, grazing management on federal lands containing habitat for fish species listed under the US Endangered Species Act (ESA) has sparked social conflict and litigation for decades. To date, the problem has been addressed through a top-down environmental governance system, but rangeland managers and grazing permittees now believe there is a need for more innovative management strategies. This article explores how social–ecological systems (SES) science can address rangeland management challenges associated with the survival and recovery of ESA-listed fish species on federal lands where cattle grazing is a dominant type of land use. We focus on the Blue Mountains of eastern Oregon, where the Mountain Social Ecological Observatory Network’s Blue Mountains Working Group is collaborating with diverse stakeholders to develop and test a novel grazing system designed to reduce the impact of cattle on riparian areas using an SES science approach. Although not a complete solution, SES science holds promise for improving rangeland management.
Ecological Consequences of Mountain Pine Beetle Outbreaks for Wildlife in Western North American Forests
Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1–30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB outbreaks on red squirrels (Tamiasciurus hudsonicus). However, there is evidence that red squirrels can persist after an outbreak under some conditions, e.g., when nonhost tree species are present. For small mammal species associated with forest understories, responses may be most pronounced during the postepidemic period (>6 years after the peak of beetle-induced tree mortality) when snags fall to produce coarse woody debris. Postoutbreak salvage logging studies (n = 6) reported results that lacked consensus. Postoutbreak salvage logging may have an impact on fewer wildlife species than postfire salvage logging, probably because only host-specific tree species are removed after beetle outbreaks.