Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
833 result(s) for "Ruan, Hao"
Sort by:
Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling
In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube–expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube–female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production from mixed sugar
The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of l -lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum . l -lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTS Glc and PTS Fru ) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and l -lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L l -lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of l -lysine production from mixed sugar. This is also the first report for improving the efficiency of l -lysine production by systematic modification of carbohydrate metabolism systems.
Spatial distribution characteristics and risk assessment of soil heavy metal pollution around typical coal gangue hill located in Fengfeng Mining area
The pollution of heavy metals in soil caused by exposed coal gangue and its prevention and control has become a hot issue restricting the green mining of coal in China. Nemerow integrated pollution index (NIPI), potential ecological risk index (RI) and human health risk assessment model were used to evaluate the pollution and risk of heavy metals (Cu, Cr, As, Pb) in the soil around the typical coal gangue hill in Fengfeng mining area of China. The results show that: firstly, the accumulation of coal gangue leads to the enrichment of four heavy metals in the surrounding shallow soil, and NIPI and RI were 1.0–4.4 and 21.63–91.28, respectively. The comprehensive pollution level of heavy metals in soil reached the warning line and above, and the potential ecological risk level reached slightly and above. When the horizontal distance exceeded 300 m, 300 m and 200 m, respectively, the influence of coal gangue hill on the heavy metal content in shallow soil, the comprehensive pollution level of heavy metals and the potential ecological risk level basically disappeared. In addition, based on the potential ecological risk assessment results and main risk factors, the ecological risk configuration of the study area was divided into five categories: “strong ecological risk + As,” “intermediate ecological risk + As + Cu,” “intermediate ecological risk + As + Cu or Pb,” “minor ecological risk + As + Cu” and “minor ecological risk + As + Cu or Pb.” The hazard index (HI) and total carcinogenic risk (TCR) of shallow soil polluted by heavy metals in the study area were 0.24–1.07 and 0.41 × 10−4–1.78 × 10−4, respectively, which posed non-carcinogenic and carcinogenic risks to children, but the risks were controllable. This study will help to take strategic measures to accurately control and repair the heavy metal pollution in the soil around the coal gangue hill and provide a scientific basis for solving the safe use of agricultural land and realizing the construction of ecological civilization.
Differential conformational expansion of NUP98-HOXA9 oncoprotein from nanosized assemblies to macrophases
Transcription factors (TFs) play a central role in gene regulation by binding to specific DNA sequences and orchestrating the transcriptional machinery. A majority of eukaryotic TFs have a block copolymer architecture, with at least one block being a folded DNA interaction domain, and another block being highly enriched in intrinsic disorder. In this study, we focus on NUP98-HOXA9 (NHA9), a chimeric TF implicated in leukemogenesis. By integrating experiments and simulations, we examine the structural dynamics of NHA9’s FG domain across assembly states. We find that the FG domain has different conformational compactness in the monomeric, oligomeric, and densely packed condensate state. Notably, the oligomeric state exhibits micelle-like organization with non-fixed stoichiometry, with the DNA-binding domain exposed at the periphery. These findings offer molecular insight into the phase behaviour of NHA9 and highlight dynamic conformational transitions of intrinsically disordered regions during molecular assembly, with implications for understanding transcriptional regulation in cancer. Some transcription factors can organize into different structural states, from small nanoscale clusters to macrophases. Here authors show that NHA9 undergoes differential conformational expansion across these states and exhibits micelle-like organization with non-fixed stoichiometry.
From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets
Background: Candesartan cilexetil, a Biopharmaceutics Classification System (BCS) II prodrug, demonstrates compromised bioavailability attributable to its limited aqueous solubility coupled with P-glycoprotein (P-gp)-mediated efflux and hepatic first-pass metabolism, thereby introducing complexities in generic drug bioequivalence assessments. With the rapid advancement of computational technologies, the integration of biorelevant dissolution methodologies with physiologically based pharmacokinetic (PBPK) modeling is emerging as a transformative paradigm in advancing bioequivalence evaluation strategies for generic drug products. This study presents a GastroPlus®-driven framework integrating in vivo predictive dissolution (IPD) and virtual bioequivalence (VBE) to evaluate the quality consistency of generic candesartan cilexetil tablets. Methods: By developing an oral PBPK model in GastroPlus®, we established an IPD method using a phosphate-buffer-based flow-through cell dissolution apparatus. In vitro dissolution profiles of generic tablets from four manufacturers were measured and incorporated into the model to perform VBE simulations. Results: The results demonstrated that only the product from Company A achieved virtual bioequivalence with the reference product, aligning with real-world quality consistency assessments. Conclusions: The proposed framework exhibited robust predictive capability, bridging in vitro dissolution data to in vivo bioequivalence outcomes, thereby offering a cost-effective and efficient strategy for formulation optimization and preclinical bioequivalence evaluation of generic drugs.
Targeting CD93 on monocytes revitalizes antitumor immunity by enhancing the function and infiltration of CD8+ T cells
BackgroundLimited activation and infiltration of CD8+ T cells are major challenges facing T cell-based immunotherapy for most solid tumors, of which the mechanism is multilayered and not yet fully understood.MethodsLevels of CD93 expression on monocytes from paired non-tumor, peritumor and tumor tissues of human hepatocellular carcinoma (HCC) were evaluated. The underlying mechanisms mediating effects of CD93+ monocytes on the inhibition and tumor exclusion of CD8+ T cells were studied through both in vitro and in vivo experiments.ResultsIn this study, we found that monocytes in the peritumoral tissues of HCC significantly increased levels of CD93 expression, and these CD93+ monocytes collocated with CD8+ T cells, whose density was much higher in peritumor than intratumor areas. In vitro experiments showed that glycolytic switch mediated tumor-induced CD93 upregulation in monocytes via the Erk signaling pathway. CD93 on the one hand could enhance PD-L1 expression through the AKT-GSK3β axis, while on the other hand inducing monocytes to produce versican, a type of matrix component which interacted with hyaluronan and collagens to inhibit CD8+ T cell migration. Consistently, levels of CD93+ monocytes positively correlated with the density of peritumoral CD8+ T cells while negatively correlated with that of intratumoral CD8+ T cells. Targeting CD93 on monocytes not only increased the infiltration and activation of CD8+ T cells but also enhanced tumor sensitivity to anti-PD-1 treatment in mice in vivo.ConclusionThis study identified an important mechanism contributing to the activation and limited infiltration of CD8+ T cells in solid tumors, and CD93+ monocytes might represent a plausible immunotherapeutic target for the treatment of HCC.
Prostate Health Index (phi) and its derivatives predict Gleason score upgrading after radical prostatectomy among patients with low-risk prostate cancer
To analyze the performance of the Prostate Health Index (phi) and its derivatives for predicting Gleason score (GS) upgrading between prostate biopsy and radical prostatectomy (RP) in the Chinese population, an observational, prospective RP cohort consisting of 351 patients from two medical centers was established from January 2017 to September 2020. Pathological reclassification was determined by the Gleason Grade Group (GG). The area under the receiver operating characteristic curve (AUC) and logistic regression (LR) models were used to evaluate the predictive performance of predictors. In clinically low-risk patients with biopsy GG ≤ 2, phi (odds ratio [OR] = 1.80, 95% confidence interval [95% CI]: 1.14-2.82, P = 0.01) and its derivative phi density (PHID; OR = 2.34, 95% CI: 1.30-4.20, P = 0.005) were significantly associated with upgrading to GG ≥3 after RP, and the results were confirmed by multivariable analysis. Similar results were observed in patients with biopsy GG of 1 for the prediction of upgrading to RP GG ≥2. Compared to the base model (AUC = 0.59), addition of the phi or PHID could provide additional predictive value for GS upgrading in low-risk patients (AUC = 0.69 and 0.71, respectively, both P < 0.05). In conclusion, phi and PHID could predict GS upgrading after RP in clinically low-risk patients.
Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma
Background A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to identify the optimal biomarkers for ESCC using machine learning algorithms. Methods Biomarkers related to clinical survival, recurrence or therapeutic response of patients with ESCC were determined through literature database searching. Forty-eight biomarkers linked to recurrence or prognosis of ESCC were used to construct a molecular interaction network based on NetBox and then to identify the functional modules. Publicably available mRNA transcriptome data of ESCC downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets included GSE53625 and TCGA-ESCC. Five machine learning algorithms, including logical regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF) and XGBoost, were used to develop classifiers for prognostic classification for feature selection. The area under ROC curve (AUC) was used to evaluate the performance of the prognostic classifiers. The importances of identified molecules were ranked by their occurrence frequencies in the prognostic classifiers. Kaplan-Meier survival analysis and log-rank test were performed to determine the statistical significance of overall survival. Results A total of 48 clinically proven molecules associated with ESCC progression were used to construct a molecular interaction network with 3 functional modules comprising 17 component molecules. The 131,071 prognostic classifiers using these 17 molecules were built for each machine learning algorithm. Using the occurrence frequencies in the prognostic classifiers with AUCs greater than the mean value of all 131,071 AUCs to rank importances of these 17 molecules, stratifin encoded by SFN was identified as the optimal prognostic biomarker for ESCC, whose performance was further validated in another 2 independent cohorts. Conclusion The occurrence frequencies across various feature selection approaches reflect the degree of clinical importance and stratifin is an optimal prognostic biomarker for ESCC.
Equilibrium of the intracellular redox state for improving cell growth and l-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping
Background NAD(H/ + ) and NADP(H/ + ) are the most important redox cofactors in bacteria. However, the intracellular redox balance is in advantage of the cell growth and production of NAD(P)H-dependent products. Results In this paper, we rationally engineered glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and isocitrate dehydrogenase (IDH) to switch the nucleotide-cofactor specificity resulting in an increase in final titer [from 85.6 to 121.4 g L −1 ] and carbon yield [from 0.33 to 0.46 g (g glucose) −1 ] of l -lysine in strain RGI in fed-batch fermentation. To do this, we firstly analyzed the production performance of original strain JL-6, indicating that the imbalance of intracellular redox was the limiting factor for l -lysine production. Subsequently, we modified the native GAPDH and indicated that recombinant strain RG with nonnative NADP-GAPDH dramatically changed the intracellular levels of NADH and NADPH. However, l -lysine production did not significantly increase because cell growth was harmed at low NADH level. Lastly, the nonnative NAD-IDH was introduced in strain RG to increase the NADH availability and to equilibrate the intracellular redox. The resulted strain RGI showed the stable ratio of NADPH/NADH at about 1.00, which in turn improved cell growth (μ max.  = 0.31 h −1 ) and l -lysine productivity ( q Lys, max.  = 0.53 g g −1 h −1 ) as compared with strain RG (μ max.  = 0.14 h −1 and q Lys, max.  = 0.42 g g −1  h −1 ). Conclusions This is the first report of balancing the intracellular redox state by switching the nucleotide-cofactor specificity of GAPDH and IDH, thereby improving cell growth and l -lysine production.