Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"Rubin, Carl-Johan"
Sort by:
Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard
by
Rubin, Carl-Johan
,
Marsik, Petr
,
Soler, Lucile
in
Alcohol Oxidoreductases - genetics
,
Alcohol Oxidoreductases - physiology
,
Animals
2019
Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the house-keeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.
Journal Article
Genetics of adaptation in modern chicken
by
Rubin, Carl-Johan
,
Kerje, Susanne
,
Brisbin, I. Lehr
in
60 APPLIED LIFE SCIENCES
,
Adaptation
,
Adaptation, Biological
2019
We carried out whole genome resequencing of 127 chicken including red jungle fowl and multiple populations of commercial broilers and layers to perform a systematic screening of adaptive changes in modern chicken (Gallus gallus domesticus). We uncovered >21 million high quality SNPs of which 34% are newly detected variants. This panel comprises >115,000 predicted amino-acid altering substitutions as well as 1,100 SNPs predicted to be stop-gain or -loss, several of which reach high frequencies. Signatures of selection were investigated both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during domestication and breed development. Contrasting wild and domestic chicken we confirmed selection at the BCO2 and TSHR loci and identified 34 putative sweeps co-localized with ALX1, KITLG, EPGR, IGF1, DLK1, JPT2, CRAMP1, and GLI3, among others. Analysis of enrichment between groups of wild vs. commercials and broilers vs. layers revealed a further panel of candidate genes including CORIN, SKIV2L2 implicated in pigmentation and LEPR, MEGF10 and SPEF2, suggestive of production-oriented selection. SNPs with marked allele frequency differences between wild and domestic chicken showed a highly significant deficiency in the proportion of amino-acid altering mutations (P<2.5×10-6). The results contribute to the understanding of major genetic changes that took place during the evolution of modern chickens and in poultry breeding.
Journal Article
Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
by
Aken, Bronwen
,
Turner-Maier, Jason
,
Younis, Shady
in
alleles
,
Animal biology
,
Animal genetics
2014
The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.
Journal Article
Strong signatures of selection in the domestic pig genome
by
Rubin, Carl-Johan
,
Barrio, Alvaro Martinez
,
Jern, Patric
in
Alleles
,
Amino Acid Sequence
,
Animal behavior
2012
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1 , and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white , Patch , or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.
Journal Article
Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice
by
Rubin, Carl-Johan
,
Lindgren, Gabriella
,
Imsland, Freyja
in
631/136/368
,
631/378/2583
,
631/378/2632
2012
A premature stop codon in the
DMRT3
gene has a major effect on the pattern of locomotion in horses, and the Dmrt3 transcription factor is critical in the development of a coordinated locomotor network in mice, suggesting that it has an important role in configuring the spinal circuits that control stride.
Gait keeper: a single mutation gives horses pace
Some horses — notably the harness-racing American Standardbred and the all-terrain Icelandic breed — have the ability to perform extra gaits. All horses can walk, trot, canter and gallop, but some can also 'pace' — moving the two legs on the same side of the body in unison — and/or perform other novel ambling gaits. A genome-wide association analysis of Icelandic horses has identified linkage between a premature stop codon in the
DMRT3
gene and the ability to perform alternative gaits. Functional studies in mice show that
Dmrt3
is expressed in a subset of spinal cord neurons that are crucial for the normal development of a coordinated locomotor network that controlling limb movements.
Dmrt3
may therefore have a key role in configuring the spinal circuits that control stride in vertebrates. In the domestic horses, the
DMRT3
mutation has had a major impact on the creatures' diversification, because the altered gait characteristics of a number of breeds apparently require this mutation.
Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement
1
. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles
2
. Here we show that a premature stop codon in the
DMRT3
gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and
Dmrt3
-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions
Dmrt3
in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The
DMRT3
mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
Journal Article
Heterochiasmy and the establishment of gsdf as a novel sex determining gene in Atlantic halibut
by
Rubin, Carl-Johan
,
Edvardsen, Rolf Brudvik
,
Sundström, Elisabeth
in
Animals
,
Biology and Life Sciences
,
Chromosome 13
2022
Atlantic Halibut (
Hippoglossus hippoglossus
) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of
gonadal somatic cell derived factor
(
gsdf
). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor.
Journal Article
Long-read whole-genome analysis of human single cells
2023
Long-read sequencing has dramatically increased our understanding of human genome variation. Here, we demonstrate that long-read technology can give new insights into the genomic architecture of individual cells. Clonally expanded CD8+ T-cells from a human donor were subjected to droplet-based multiple displacement amplification (dMDA) to generate long molecules with reduced bias. PacBio sequencing generated up to 40% genome coverage per single-cell, enabling detection of single nucleotide variants (SNVs), structural variants (SVs), and tandem repeats, also in regions inaccessible by short reads. 28 somatic SNVs were detected, including one case of mitochondrial heteroplasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase compared to Illumina-based results from clonally related cells. Single-cell de novo assembly generated a genome size of up to 598 Mb and 1762 (12.8%) complete gene models. In summary, our work shows the promise of long-read sequencing toward characterization of the full spectrum of genetic variation in single cells.
Here the authors introduce a new method to study DNA in single cells by long-read sequencing. Their method gives a more complete view of the genomic structure of individual cells and allows to study genetic differences at the single-cell level.
Journal Article
Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens
by
Rubin, Carl-Johan
,
Johnsson, Martin
,
Nätt, Daniel
in
Animal Genetics and Genomics
,
Animals
,
Animals, Wild - genetics
2012
Background
Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation.
Results
In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication.
Conclusions
Our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.
Journal Article
Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring
by
Rubin, Carl-Johan
,
Gilbert, Elizabeth R
,
Lamichhaney, Sangeet
in
Adaptation, Physiological - genetics
,
Alleles
,
Animal populations
2012
The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F ST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.
Journal Article
Reconstruction of the birth of a male sex chromosome present in Atlantic herring
2020
The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
Journal Article