Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
288 result(s) for "Rubin, Edward M."
Sort by:
Genomics of cellulosic biofuels
The development of alternatives to fossil fuels as an energy source is an urgent global priority. Cellulosic biomass has the potential to contribute to meeting the demand for liquid fuel, but land-use requirements and process inefficiencies represent hurdles for large-scale deployment of biomass-to-biofuel technologies. Genomic information gathered from across the biosphere, including potential energy crops and microorganisms able to break down biomass, will be vital for improving the prospects of significant cellulosic biofuel production.
Rhizosphere microbiome structure alters to enable wilt resistance in tomato
Tomato rhizosphere microbiome alterations that contribute to bacterial wilt resistance are detected using metagenomics. Tomato variety Hawaii 7996 is resistant to the soil-borne pathogen Ralstonia solanacearum , whereas the Moneymaker variety is susceptible to the pathogen. To evaluate whether plant-associated microorganisms have a role in disease resistance, we analyzed the rhizosphere microbiomes of both varieties in a mesocosm experiment. Microbiome structures differed between the two cultivars. Transplantation of rhizosphere microbiota from resistant plants suppressed disease symptoms in susceptible plants. Comparative analyses of rhizosphere metagenomes from resistant and susceptible plants enabled the identification and assembly of a flavobacterial genome that was far more abundant in the resistant plant rhizosphere microbiome than in that of the susceptible plant. We cultivated this flavobacterium, named TRM1, and found that it could suppress R. solanacearum -disease development in a susceptible plant in pot experiments. Our findings reveal a role for native microbiota in protecting plants from microbial pathogens, and our approach charts a path toward the development of probiotics to ameliorate plant diseases.
Genomic views of distant-acting enhancers
In contrast to protein-coding sequences, the significance of variation in non-coding DNA in human disease has been minimally explored. A great number of recent genome-wide association studies suggest that non-coding variation is a significant risk factor for common disorders, but the mechanisms by which this variation contributes to disease remain largely obscure. Distant-acting transcriptional enhancers — a major category of functional non-coding DNA — are involved in many developmental and disease-relevant processes. Genome-wide approaches to their discovery and functional characterization are now available and provide a growing knowledge base for the systematic exploration of their role in human biology and disease susceptibility.
Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
Permafrost microbes await the thaw Permafrost soil in the Arctic contains a huge reservoir of carbon. If the climate warms and the permafrost thaws, this carbon would become accessible to microbial degradation, releasing greenhouse gases in the process. The microbes responsible for this process are largely unknown. Metagenomic analysis of DNA isolated from two permafrost soils collected in Alaska reveals a rapid microbial response to thawing, with many functional gene abundances increasing. A draft genome of a novel methanogen was constructed from the sequence data. This study highlights the importance of rapid cycling of methane and nitrogen in thawing permafrost. Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere 1 , 2 , 3 . This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw 2 . During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions 4 , 5 . Despite recent advances in the use of molecular tools to study permafrost microbial communities 6 , 7 , 8 , 9 , their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 °C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.
ChIP-seq accurately predicts tissue-specific activity of enhancers
A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo . Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale. Mapping gene enhancers Determining the spatial and temporal activity patterns of enhancers, short DNA segments that can bind to regulatory proteins to enhance gene transcription levels, remains a challenge in the functional annotation of the human genome. The in vivo application of ChIP-seq (chromatin immunoprecipitation with massively parallel sequencing) has been used to map genome-wide occupancy of the enhancer-associated protein p300 in developing mouse tissues. There are several thousand p300 binding sites in the embryonic forebrain, midbrain and limb tissues, and testing a sample of these suggests that most are associated with reproducible enhancer activity. Data sets of this type will be useful in the study of the role of enhancers in human biology and in pathological processes. Determining the spatial and temporal activity patterns of enhancers remains a challenge in the functional annotation of the human genome. In this study, the genome-wide occupancy of the enhancer-associated protein p300 was determined in developing mouse tissues by using chromatin immunoprecipitation followed by massively parallel sequencing. Testing the p300-bound sequences in a transgenic mouse enhancer assay confirmed that p300 binding is a highly effective means to identify enhancers and to predict in which tissues they are active.
Insights into the phylogeny and coding potential of microbial dark matter
Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet. Uncultivated archaeal and bacterial cells of major uncharted branches of the tree of life are targeted and sequenced using single-cell genomics; this enables resolution of many intra- and inter-phylum-level relationships, uncovers unexpected metabolic features that challenge established boundaries between the three domains of life, and leads to the proposal of two new superphyla. The genomics of uncultured microbes Currently available genome sequences give us a narrow view of the remarkable diversity of microorganisms because the vast majority of them have never been cultivated in pure culture. Here Tanja Woyke and colleagues use single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats. This information reveals numerous intra- and inter-phylum relationships and a number of unexpected metabolic features. On the basis of the new data the authors propose taxonomic revisions to the archaeal and bacterial domains, including a proposal to reorganizing the Archaea into three superphyla.
The Epigenomic Landscape of Prokaryotes
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.
Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill
The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.
Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice
Heart disease risk identified It has been know for several years that genetic variations in a stretch of DNA on chromosome 9p21 are linked to the incidence of coronary artery disease. The nature of this link has remained unknown, not least because the 58-kilobase culprit genomic interval contains no known protein-encoding genes, and it appears unlinked to known major contributors to the disease. Now an experiment in which the corresponding stretch of DNA was deleted in mice shows that this part of the chromosome regulates cardiac expression of two genes located some 100,000 base pairs away. The genes, Cdkn2a and Cdkn2b , encode cyclin-dependent kinase inhibitors, and their down-regulation in a mouse model results in excessive aortic smooth muscle cell proliferation. This suggests that dysregulation of vascular cell proliferation underlies cardiac disease susceptibility linked to chromosome 9p21 variation. Sequence variations in a 58-kilobase interval on human chromosome 9p21 have been associated with an increased risk of coronary artery disease. However, this interval contains no protein-coding genes and the mechanism underlying the increased risk has been unclear. Here, the corresponding interval has been deleted from mouse chromosome 4, revealing that this part of the chromosome regulates the cardiac expression of two nearby genes, Cdkn2a and Cdkn2b , and the proliferation dynamics of vascular cells. Sequence polymorphisms in a 58-kilobase (kb) interval on chromosome 9p21 confer a markedly increased risk of coronary artery disease (CAD), the leading cause of death worldwide 1 , 2 . The variants have a substantial effect on the epidemiology of CAD and other life-threatening vascular conditions because nearly one-quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein-coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70-kb non-coding interval on mouse chromosome 4 affects cardiac expression of neighbouring genes, as well as proliferation properties of vascular cells. Chr4 Δ70kb/Δ70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the non-coding interval, Cdkn2a and Cdkn2b , is severely reduced in chr4 Δ70kb/Δ70kb mice, indicating that distant-acting gene regulatory functions are located in the non-coding CAD risk interval. Allele-specific expression of Cdkn2b transcripts in heterozygous mice showed that the deletion affects expression through a cis -acting mechanism. Primary cultures of chr4 Δ70kb/Δ70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval has a pivotal role in regulation of cardiac Cdkn2a/b expression, and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.
Prehistoric genomes reveal the genetic foundation and cost of horse domestication
Significance The domestication of the horse revolutionized warfare, trade, and the exchange of people and ideas. This at least 5,500-y-long process, which ultimately transformed wild horses into the hundreds of breeds living today, is difficult to reconstruct from archeological data and modern genetics alone. We therefore sequenced two complete horse genomes, predating domestication by thousands of years, to characterize the genetic footprint of domestication. These ancient genomes reveal predomestic population structure and a significant fraction of genetic variation shared with the domestic breeds but absent from Przewalski’s horses. We find positive selection on genes involved in various aspects of locomotion, physiology, and cognition. Finally, we show that modern horse genomes contain an excess of deleterious mutations, likely representing the genetic cost of domestication. The domestication of the horse ∼5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski’s horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the “cost of domestication” hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.