Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Ruchayskiy, O"
Sort by:
Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model
A bstract Heavy neutral leptons (HNLs) are hypothetical particles, motivated in the first place by their ability to explain neutrino oscillations. Experimental searches for HNLs are typically conducted under the assumption of a single HNL mixing with a single neutrino flavor. However, the resulting exclusion limits may not directly constrain the corresponding mixing angles in realistic HNL models — those which can explain neutrino oscillations. The reinterpretation of the results of these experimental searches turns out to be a non-trivial task, that requires significant knowledge of the details of the experiment. In this work, we perform a reinterpretation of the latest ATLAS search for HNLs decaying promptly to a tri-lepton final state. We show that in a realistic model with two HNLs, the actual limits can vary by several orders of magnitude depending on the free parameters of the model. Marginalizing over the unknown model parameters leads to an exclusion limit on the total mixing angle which can be up to 3 orders of magnitude weaker than the limits reported in ref. [1]. This demonstrates that the reinterpretation of results from experimental searches is a necessary step to obtain meaningful limits on realistic models. We detail a few steps that can be taken by experimental collaborations in order to simplify the reuse of their results.
Feebly-interacting particles: FIPs 2020 workshop report
With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
Evolution of the Primordial Axial Charge across Cosmic Times
We investigate collisional decay of the axial charge in an electron-photon plasma at temperatures 10 MeV - 100 GeV. We demonstrate that the decay rate of the axial charge is first order in the fine-structure constant \\(\\Gamma_{\\rm flip}\\propto \\alpha m_{e}^{2}/T\\) and thus orders of magnitude greater than the naive estimate which has been in use for decades. This counterintuitive result arises through infrared divergences regularized at high temperature by environmental effects. The decay of axial charge plays an important role in the problems of leptogenesis and cosmic magnetogenesis.
Equilibration of the chiral asymmetry due to finite electron mass in electron-positron plasma
We calculate the rate of collisional decay of the axial charge in an ultrarelativistic electron-positron plasma, also known as the chirality flipping rate. We find that contrary to the existing estimates, the chirality flipping rate appears already in the first order in the fine-structure constant \\(\\alpha\\) and is therefore orders of magnitude greater than previously believed. The main channels for the rapid relaxation of the axial charge are the collinear emission of a weakly damped photon and the Compton scattering. The latter contributes to the \\(\\mathcal{O}(\\alpha)\\) result because of the infrared divergence in its cross section, which is regularized on the soft scale \\(\\sim eT\\) due to the thermal corrections. Our results are important for the description of the early Universe processes (such as leptogenesis or magnetogenesis) that affect differently left- and right-chiral fermions of the Standard Model, as discussed in more details in the companion Letter.
Sterile Neutrino Dark Matter
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
How to constrain warm dark matter with the Lyman \\(\\alpha\\) forest
The flux power spectrum of the high resolution Lyman-\\(\\alpha\\) forest data exhibits suppression at small scales. The origin of this suppression can be due to long-sought warm dark matter (WDM) or to thermal effects, related to the largely unknown reionization history of the Universe. Previous works explored a specific class of reionization histories that exhibit sufficiently strong thermal supression and leave little room for warm dark matter interpretation. In this work we choose a different class of reionization histories, fully compatible with available data on evolution of reionization, but much colder then the reionization histories used by previous authors in determining the nature of dark matter, thus leaving the broadest room for the WDM interpretation of the suppression in the flux power spectrum. We find that WDM thermal relics with masses below 1.9 keV (95% CL) would produce a suppression at scales that are larger than observed maximum of the flux power spectrum, independently of assumptions about thermal effects. This WDM mass is significantly lower than previously claimed bounds, demonstrating the level of systematic uncertainty of the Lyman-\\(\\alpha\\) forest method, due to the previous modelling. We also discuss how this uncertainty may affect also data at large scales measured by eBOSS.
Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma (\\emph{chiral magnetic effect}). We present a self-consistent treatment of the \\emph{chiral MHD equations}, which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfv\\'{e}n wave for incompressible flows, increases the frequencies of the Alfv\\'{e}n wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark--gluon plasma.
Surface brightness profile of the 3.5 keV line in the Milky Way halo
We report a detection of 3.5 keV line in the Milky Way in 5 regions offset from the Galactic Center by distances from 10' to 35 degrees. We build an angular profile of this line and compare it with profiles of several astrophysical lines detected in the same observations. We compare our results with other detections and bounds previously obtained using observations of the Milky Way.
Potential of LOFT telescope for the search of dark matter
Large Observatory For X-ray Timing (LOFT) is a next generation X-ray telescope selected by European Space Agency as one of the space mission concepts within the ``Cosmic Vision'' programme. The Large Area Detector on board of LOFT will be a collimator-type telescope with an unprecedentedly large collecting area of about 10 square meters in the energy band between 2 and 100 keV. We demonstrate that LOFT will be a powerful dark matter detector, suitable for the search of the X-ray line emission expected from decays of light dark matter particles in galactic halos. We show that LOFT will have sensitivity for dark matter line search more than an order of magnitude higher than that of all existing X-ray telescopes. In this way, LOFT will be able to provide a new insight into the fundamental problem of the nature of dark matter.
Anomalous Maxwell equations for inhomogeneous chiral plasma
Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.