Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Ruiz-Roldan, Carmen"
Sort by:
Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium
by
Dufresne, Marie
,
Zeng, Qiandong
,
Rothamsted Research ; Biotechnology and Biological Sciences Research Council (BBSRC)
in
631/208/212/748
,
631/208/726/2001/1428
,
631/326/193/2542
2010
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective
Journal Article
No to neocosmospora : phylogenomic and practical reasons for continued inclusion of the fusarium solani species complex in the genus fusarium
by
Di Pietro, Antonio
,
Ruiz-Roldán, Carmen
,
Wingfield, Michael J.
in
Ecological and Evolutionary Science
2020
This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium. Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora. In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium. There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Journal Article
The phosphatase Ptc6 is involved in virulence and MAPK signalling in Fusarium oxysporum
by
Membrives, Sergio
,
Hera, Concepcion
,
Ruiz‐Roldán, Carmen
in
Acidification
,
Biological activity
,
Cell division
2020
Summary Mitogen‐activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.
Journal Article
The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence
by
Prieto, Alicia
,
Ruiz-Roldán, Carmen
,
López-Fernández, Loida
in
Alcian Blue
,
Analysis
,
Antibiotics
2013
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.
Journal Article
The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence: e84690
2013
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Delta gnt2 mutants had alpha alterations in cell wall properties related to terminal alpha or beta -linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Delta gnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.
Journal Article
Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum
by
Roncero, M. Isabel G
,
Ruiz-Roldán, M. Carmen
,
Huertas-González, M. Dolores
in
Amino acids
,
Cloning
,
Fusarium oxysporum
1999
A pectate lyase (PL1) from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici was previously characterized, and evidence was obtained for its production in planta. The gene encoding PL1 was isolated from a genomic library of F. oxysporum f.sp. lycopersici. Pl1 encodes a 240 amino-acid polypeptide with one putative N-glycosylation site and a 15 amino-acid N-terminal signal peptide. PL1 showed 89%, 67%, 55% and 56% identity with the products of the Fusarium solani f.sp. pisi pelA, pelB, pelC and pelD genes, respectively. A single copy of the gene was detected in different formae speciales of F. oxysporum. The pl1 transcript was observed during growth on polygalacturonic acid sodium salt and tomato vascular tissue, but not on pectin or glucose. RT-PCR showed pl1 expression in roots and stems of tomato plants infected by F. oxysporum f.sp. lycopersici.
Journal Article
No to italic toggle=\yes\>Neocosmospora /italic>: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus italic toggle=\yes\>Fusarium /italic
2020
ABSTRACT This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium. Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora. In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium. There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Journal Article
Occurrence of Pseudomonas spp. in Raw Vegetables: Molecular and Phenotypical Analysis of Their Antimicrobial Resistance and Virulence-Related Traits
by
Sáenz, Yolanda
,
Torres, Carmen
,
Rojo-Bezares, Beatriz
in
Amino acids
,
Anti-Bacterial Agents - pharmacology
,
Antibiotics
2021
Pseudomonas is characterized by its great capacity to colonize different ecological niches, but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases. Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into 139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635) truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed, including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting their pathological importance.
Journal Article
Pseudomonas aeruginosa from river water: antimicrobial resistance, virulence and molecular typing
by
Sáenz, Yolanda
,
Casado, Cristina
,
Ceniceros, Tania
in
Antibiotic resistance
,
Antibiotics
,
Antimicrobial agents
2024
Abstract
Pseudomonas aeruginosa isolates were recovered from surface river water samples in La Rioja region (Spain) to characterise their antibiotic resistance, molecular typing and virulence mechanisms. Fifty-two P. aeruginosa isolates were isolated from 15 different water samples (45.4%) and belonged to 23 different pulsed-field electrophoresis (PFGE) patterns. All isolates were susceptible to all antibiotics tested, except one carbapenem-resistant P. aeruginosa that showed a premature stop codon in OprD porin. Twenty-two sequence types (STs) (six new ones) were detected among 29 selected P. aeruginosa (one strain with a different PFGE pattern per sample), with ST274 (14%) being the most frequent one. O:6 and O:3 were the predominant serotypes (31%). Seven virulotypes were detected, being 59% exoS-exoY-exoT-exoA-lasA-lasB-lasI-lasR-rhlAB-rhlI-rhlR-aprA-positive P. aeruginosa. It is noteworthy that the exlA gene was identified in three strains (10.3%), and the exoU gene in seven (24.1%), exoS in 18 (62.1%), and both exoS and exoU genes in one strain. High motility ranges were found in these strains. Twenty-seven per cent of strains produced more biofilm biomass, 90% more pyorubin, 83% more pyocyanin and 65.5% more than twice the elastase activity compared with the PAO1 strain. These results highlight the importance of rivers as temporary reservoirs and sources of P. aeruginosa transmission, and show the importance of their epidemiological surveillance in the environment.
Rivers are temporary reservoirs and transmission sources of antimicrobial resistant and virulent Pseudomonasaeruginosa, and their epidemiological surveillance in the environment is required.
Journal Article
Assessing the Hands-on Usability of the Healthy Jeart App Specifically Tailored to Young Users
by
Merino-Godoy, María-de-los-Ángeles
,
Yot-Dominguez, Carmen
,
Roldán-Ruiz, Ana Maria
in
Consent
,
Ethics
,
Exercise
2024
Background: The widespread adoption of mobile devices by adolescents underscores the potential to harness these tools to instill healthy habits into their daily lives. An exemplary manifestation of this initiative is the Healthy Jeart app, crafted with the explicit goal of fostering well-being. Methodology: This study, framed within an applied investigation, adopts an exploratory and descriptive approach, specifically delving into the realm of user experience analysis. The focus of this research is a preliminary examination aimed at understanding users’ perceived usability of the application. To glean insights, a comprehensive questionnaire was administered to 101 teenagers, seeking their evaluations on various usability attributes. The study took place during 2022. Results: The findings reveal a considerable consensus among users regarding the evaluated usability aspects. However, the areas for improvement predominantly revolve around managing the information density, particularly for a subset of end users grappling with overwhelming content. Additionally, recommendations are put forth to streamline the confirmation process for user suggestions and comments. Conclusion: This analysis illuminates both the strengths of the app and areas ripe for refinement, paving the way for a more user-centric and efficacious Healthy Jeart application.
Journal Article