Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Ruslan, Mohd Hafidz"
Sort by:
Ionic liquid infused starch-cellulose derivative based quasi-solid dye-sensitized solar cell: exploiting the rheological properties of natural polymers
Starch and cellulose have long been used in various industrial applications as gelating agents. In this work, the intrinsic adhesive properties of these biopolymers are exploited for application as electrolytes in DSSC. Firstly, potato starch was chemically modified into phthaloyl starch in a facile esterification process. Fabrication of polymer electrolyte with phthaloyl starch (PhSt) and hydroxyethyl cellulose (HEC) incorporated with dimethylformamide and tetrapropylammonium iodide produced homogeneous gels with diminished crystallinity. Infusion of different weight percentages of 1-butyl-3-methylimidazolium iodide (BMII) into the gels were revealed to further suppress polymer crystallinity and elevate ionic conductivity. Rheological analysis revealed that addition of up to 6 wt% of ionic liquid aid in elevating the rigidity, strength and tackiness of the gels. The improved adhesiveness of the gels can be correlated to effective reduction of interfacial resistance and restraining of recombination reactions based on electrochemical impedance spectroscopy. Quasi-solid DSSC fabricated with PhSt-HEC with 8 wt% of BMII exhibited enhanced short-circuit current density, JSC and fill factor, contributing to an optimized efficiency of 5.20%. Graphic abstract
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Collector
Photovoltaic (PV) cell from solar energy is one of the most widely adopted renewable energy source and commercially available system that can be used in various applications. More appealing application of PV arrays used in thermoelectric (TE) device was it can convert solar thermal energy from temperature difference into electric energy to act as power generators. In this study, a theoretical model is developed by using conducting steady state energy analysis of a PVT-TE air collector. The matrix inversion method is used to obtain energy balance equation. The effect of various parameters also investigated. The mass flow rate of range 0.01 kg/s to 0.05 kg/s and solar intensity of 400 W/m2, 600 W/m2 and 800 W/m2 was used to obtain outlet temperature, To in the range about 28.9oC to 43.7oC and PV temperature, Tp about 35.3oC to 60oC.
Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying
This study evaluated the performance of solar drying in the Malaysian red chili (Capsicum annuum L.). Red chilies were dried down from approximately 80% (wb) to 10% (wb) moisture content within 33 h. The drying process was conducted during the day, and it was compared with 65 h of open sun drying. Solar drying yielded a 49% saving in drying time compared with open sun drying. At the average solar radiation of 420 W/m2 and air flow rate of 0.07 kg/s, the collector, drying system, and pickup demonstrated efficiency rates of approximately 28%, 13%, and 45%, respectively. Evaporative capacity ranged from 0.13 to 2.36 kg/h, with an average of 0.97 kg/h. The specific moisture extraction rate (SMER) of 0.19 kg/kWh was obtained. Moreover, the drying kinetics of C. annuum L. were investigated. A nonlinear regression procedure was used to fit three drying models. These models were compared with experimental data on red chilies dried by open sun drying and those dried by solar drying. The fit quality of the models was evaluated using their coefficient of determination (R2), mean bias error, and root-mean-square error values. The Page model resulted in the highest R2 and the lowest mean bias and root-mean-square errors.
Resorcinol-Formaldehyde (RF) as a Novel Plasticizer for Starch-Based Solid Biopolymer Electrolyte
A starch-resorcinol-formaldehyde (RF)-lithium triflate (LiTf) based biodegradable polymer electrolyte membrane was synthesized via the solution casting technique. The formation of RF crosslinks in the starch matrix was found to repress the starch’s crystallinity as indicated by the XRD data. Incorporation of the RF plasticizer improved the conductivity greatly, with the highest room-temperature conductivity recorded being 4.29 × 10−4 S cm−1 achieved by the starch:LiTf:RF (20 wt.%:20 wt.%:60 wt.%) composition. The enhancement in ionic conductivity was an implication of the increase in the polymeric amorphous region concurrent with the suppression of the starch’s crystallinity. Chemical complexation between the plasticizer, starch, and lithium salt components in the electrolyte was confirmed by FTIR spectra.
Energy and Exergy Analyses of Photovoltaic-Thermal (PV/T) System with TiO2/Water Nanofluid Flow
Nanofluids are a new generation of heat-transfer fluid with higher thermal conductivity and improved heat-transfer rate compared with conventional fluids. In this study, TiO2/water (0.5wt% and 1.0wt% TiO2 in water) nanofluids were used as a coolant to investigate a PV/T system under solar-radiation levels of 700 and 900 W/m2 and mass-flow rate ranging from 0.012 kg/s to 0.0255 kg/s. The TiO2/water nanofluid-based PV/T collector produced PV/T efficiency of approximately 75% to 90% with 9.9% to 10.6% PV efficiency and 65% to 80% thermal efficiency. Meanwhile, the PV/T exergy was between 53 and 73 W with thermal exergy of 6.3 W to 11.9 W and electrical exergy of 46.7 W to 60.1 W.
Review on Energy and Exergy Analysis of Air and Water Based Photovoltaic Thermal (PVT) Collector
In photovoltaic thermal hybrid (PV/T) collectors, the electricity and thermal energy are produce simultaneously. PV/T technology has been proven in previous studies where it could give benefits for high energy demand supplementary. For example, in space heating, domestic water heating and also drying. The PVT collectors can be classified into air-based PVT, water-based PVT and dual-fluid (air+water) PVT collector. In this paper, the analysis of energy and exergy efficiency of PVT collectors are compiled and reviewed. This study has found that generally the energy and exergy efficiency are range from 40%-70% and 5%-20%, respectively.
Investigation of TiO2 and MWCNT Nanofluids-based Photovoltaic-Thermal (PV/T) System
Nanofluids as a new generation of cooling fluid has been found in recent years to improve the heat-transfer coefficient and enhance the system performance. This study presents investigation conducted on the performances of TiO2 and MWCNT nanofluids-based PVT systems. The preparation of nanofluids using two step method and dispersing of surfactant for a stable nanofluid. The experimental investigation with the effect of different concentration, mass flow rate (0.012 kg/s to 0.0255 kg/s) and solar radiation (500 W/m2 to 900 W/m2) on the performance of nanofluids-based PVT system is presented. The lowest temperature of the PV module and highest fluid's change of temperature were recorded when the collector uses TiO2 fluid 1.0 wt% which is 2.01°C and 1.80°C.
Comparison of Selected Metals Content in Cambodian Striped Snakehead Fish (Channa striata) Using Solar Drying System and Open Sun Drying
The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems.
Experimental and Theoretical Investigations of the Impact Localization of a Passive Smart Composite Plate Fabricated Using Piezoelectric Materials
Two passive smart composite plates are fabricated using one and two PZT patches that are cheaper than the PZT wafer. The composite plate is fabricated in low temperature through the hand lay-up method to avoid PZT patch decoupling and wire spoiling. The locus of the impact point is identified using the output voltage to identify the impact location using one sensor. The output voltages of the sensors are analyzed to identify the impact location using two sensors. The locations of the impacts are determined based on the crossing points of two circles and the origin of an intended Cartesian coordinate system that is concentric with one of the sensors. This study proposes the impact location identification of the passive smart composite using the low-cost PZT patch PIC155 instead of common embedded materials (wafer and element piezoelectric).
Review of water-nanofluid based photovoltaic/thermal (PV/T) systems
Solar energy is secure, clean, and available on earth throughout the year. The PV/T system is a device designed to receive solar energy and convert it into electric/thermal energy. Nanofluid is a new generation of heat transfer fluid with promising higher thermal conductivity and improve heat transfer rate compared with conventional fluids. In this review, the recent studies of PV/T using nanofluid is discussed regarding basic concept and theory PV/T, thermal conductivity of nanofluid and experimentally and theoretically study the perfromance of PV/T using nanofluid. A review of the literature shows that many studies have evaluated the potential of nanofluid as heat transfer fluid and optical filter in the PV/T system. The preparations of nanofluid play an essential key for high stability and homogenous nanofluid for a long period. The thermal conductivity of nanofluid is depending on the size of nanoparticles, concentration and preparation of nanofluids.