Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,480 result(s) for "Russo, Giovanni"
Sort by:
CRAWLING: a crowdsourcing algorithm on wheels for smart parking
We present the principled design of CRAWLING: a CRowdsourcing Algorithm on WheeLs for smart parkING. CRAWLING is an in-car service for the routing of connected cars. Specifically, cars equipped with our service are able to crowdsource data from third-parties, including other cars, pedestrians, smart sensors and social media, in order to fulfill a given routing task. CRAWLING relies on a solid control-theoretical formulation and the routes it computes are the solution of an optimal data-driven control problem where cars maximize a reward capturing environmental conditions while tracking some desired behavior. A key feature of our service is that it allows to consider stochastic behaviors, while taking into account streams of heterogeneous data. We propose a stand-alone, general-purpose, architecture of CRAWLING and we show its effectiveness on a set of scenarios aimed at illustrating all the key features of our service. Simulations show that, when cars are equipped with CRAWLING, the service effectively orchestrates the vehicles, making them able to react online to road conditions, minimizing their cost functions. The architecture implementing our service is openly available and modular with the supporting code enabling researchers to build on CRAWLING and to replicate the numerical results.
Trends and Evolution in the Concept of Marine Ecosystem Services: An Overview
The biotic and abiotic assets of the marine environment form the “marine natural capital” embedded in the global ocean. Marine natural capital provides the flow of “marine ecosystem services” that are directly used or enjoyed by people providing benefits to human well-being. They include provisioning services (e.g., food), regulation and maintenance services (e.g., carbon sequestration and storage, and coastal protection), and cultural services (e.g., tourism and recreational benefits). In recent decades, human activities have increased the pressures on marine ecosystems, often leading to ecosystem degradation and biodiversity loss and, in turn, affecting their ability to provide benefits to humans. Therefore, effective management strategies are crucial to the conservation of healthy and diverse marine ecosystems and to ensuring their long-term generation of goods and services. Biophysical, economic, and sociocultural assessments of marine ecosystem services are much needed to convey the importance of natural resources to managers and policy makers supporting the development and implementation of policies oriented for the sustainable management of marine resources. In addition, the accounting of marine ecosystem service values can be usefully complemented by their mapping to enable the identification of priority areas and management strategies and to facilitate science–policy dialogue. Given this premise, this study aims to review trends and evolution in the concept of marine ecosystem services. In particular, the global scientific literature on marine ecosystem services is explored by focusing on the following main aspects: the definition and classification of marine ecosystem services; their loss due to anthropogenic pressures, alternative assessment, and mapping approaches; and the inclusion of marine ecosystem services into policy and decision-making processes.
A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic
The COVID-19 epidemic hit Italy particularly hard, yielding the implementation of strict national lockdown rules. Previous modelling studies at the national level overlooked the fact that Italy is divided into administrative regions which can independently oversee their own share of the Italian National Health Service. Here, we show that heterogeneity between regions is essential to understand the spread of the epidemic and to design effective strategies to control the disease. We model Italy as a network of regions and parameterize the model of each region on real data spanning over two months from the initial outbreak. We confirm the effectiveness at the regional level of the national lockdown strategy and propose coordinated regional interventions to prevent future national lockdowns, while avoiding saturation of the regional health systems and mitigating impact on costs. Our study and methodology can be easily extended to other levels of granularity to support policy- and decision-makers. An ongoing global debate concerns effective and sustainable lockdown release strategies in the current pandemic. Here, the authors implement a network model at healthcare-relevant spatial scale to show that coordinated local strategies can be effective in containing further resurgence of the disease.
Reconstructing higher-order interactions in coupled dynamical systems
Higher-order interactions play a key role for the operation and function of a complex system. However, how to identify them is still an open problem. Here, we propose a method to fully reconstruct the structural connectivity of a system of coupled dynamical units, identifying both pairwise and higher-order interactions from the system time evolution. Our method works for any dynamics, and allows the reconstruction of both hypergraphs and simplicial complexes, either undirected or directed, unweighted or weighted. With two concrete applications, we show how the method can help understanding the complexity of bacterial systems, or the microscopic mechanisms of interaction underlying coupled chaotic oscillators. Higher-order interactions are broadly present in biological and social networks, however patterns of such interaction are challenging to recover from observed data. The authors propose a method to infer the high-order structural connectivity of a complex system from its time evolution.
High-order finite-difference ghost-point methods for elliptic problems in domains with curved boundaries
In this article, a fourth-order finite-difference ghost-point method for the Poisson equation on regular Cartesian mesh is presented. The method can be considered the high-order extension of the second-order ghost method introduced earlier by the authors. Three different discretizations are considered, which differ in the stencil that discretizes the Laplacian and the source term. It is shown that only two of them provide a stable method. The accuracy of such stable methods is numerically verified on several test problems.
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts
Neurons from fibroblasts Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang et al . show that a combination of the three transcription factors Ascl1 (also known as Mash1 ), Brn2 (or Pou3f2 ) and Myt1l greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo et al . use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are Mash1 , Nurr1 (or Nr4a2 ) and Lmx1a . Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo et al . use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors. Transplantation of dopaminergic neurons can potentially improve the clinical outcome of Parkinson’s disease, a neurological disorder resulting from degeneration of mesencephalic dopaminergic neurons 1 , 2 . In particular, transplantation of embryonic-stem-cell-derived dopaminergic neurons has been shown to be efficient in restoring motor symptoms in conditions of dopamine deficiency 3 , 4 . However, the use of pluripotent-derived cells might lead to the development of tumours if not properly controlled 5 . Here we identified a minimal set of three transcription factors— Mash1 (also known as Ascl1 ), Nurr1 (also known as Nr4a2 ) and Lmx1a —that are able to generate directly functional dopaminergic neurons from mouse and human fibroblasts without reverting to a progenitor cell stage. Induced dopaminergic (iDA) cells release dopamine and show spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain dopaminergic neurons. The three factors were able to elicit dopaminergic neuronal conversion in prenatal and adult fibroblasts from healthy donors and Parkinson’s disease patients. Direct generation of iDA cells from somatic cells might have significant implications for understanding critical processes for neuronal development, in vitro disease modelling and cell replacement therapies.
Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium mangrovei
Mozzarella stretching water (MSW) is a dairy effluent generated from mozzarella cheese production that does not have a real use and is destined to disposal, causing environmental problems and representing a high disposal cost for dairy producers. Spent brewery yeast (SBY) is another promising food waste produced after brewery manufacturing that could be recycled in new biotechnological processes. Aurantiochytrium mangrovei is an aquatic protist known as producer of bioactive lipids such as omega 3 long chain polyunsaturated fatty acids (ω3 LC-PUFA), in particular docosahexaenoic acid (DHA). In this work MSW and SBY have been used to formulate new sustainable growth media for A. mangrovei cultivation and production of DHA in an attempt to valorize these effluents. MSW required an enzymatic hydrolysis to enhance the biomass production. The new media obtained from hydrolysed MSW was also optimized using response surface methodologies, obtaining 10.14 g L−1 of biomass in optimized medium, with a DHA content of 1.21 g L−1.
PLASTIC MATERIALS IN EUROPEAN AGRICULTURE: ACTUAL USE AND PERSPECTIVES
The world consumption of plastics in agriculture amounts yearly to 6.5 million tons. In addition to conventional polymers used in agriculture for greenhouses and mulches such as PE, PVC, EVA, photo-selective and luminescent polymers have been used, in order to improve the quality of crops. For the same reason plastic nets are used mainly in countries with tropical and Mediterranean climates. For an environmentally friendly agricultural activity, an alternative strategy can be represented by bio-based agricultural raw materials. For low environmental impact applications, biodegradable materials for agricultural films are nowadays produced. An overview of the main methods for the disposal and recycling of plastic materials are presented with the results of mechanical and radiometric tests on recycled plastics. The strategies to reduce the burden of plastics in agriculture are: a correct procedure for the collection, disposal and recycling of post-consumption plastics; the increase of lifetime duration and performance; and the introduction and promotion of bio-based materials.
Global Entrainment of Transcriptional Systems to Periodic Inputs
This paper addresses the problem of providing mathematical conditions that allow one to ensure that biological networks, such as transcriptional systems, can be globally entrained to external periodic inputs. Despite appearing obvious at first, this is by no means a generic property of nonlinear dynamical systems. Through the use of contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all their solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific cases of models of transcriptional systems as well as constructs of interest in synthetic biology. A self-contained exposition of all needed results is given in the paper.
Composite Nanostructures for the Production of White Light
In this work, two different composite nanostructures, YAG:Ce and Ga0.9In0.1N, were prepared by the Urea Glass Route method and tested for the production of white light. The first composite was prepared by synthetizing the Ga0.9In0.1N nanoparticles in the presence of YAG:Ce nanoparticles. The second one was prepared by synthetizing YAG:Ce nanoparticles in the presence of Ga0.9In0.1N nanoparticles. These systems can be useful for the production of white light. X-ray Diffraction and Transmission and Scanning Electron Microscopies (TEM and SEM) were used to evaluate their structural and morphological properties. Excitation and emission spectra, the quantum yield and colour of the emitted light were acquired to evaluate the optical properties of the systems.