Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Rybinska, Ilona"
Sort by:
Cushing’s Disease in the Animal Kingdom: Translational Insights for Human Medicine
by
Oldani, Monica
,
Gaudenzi, Germano
,
Massardi, Elena
in
ACTH
,
Agonists
,
Animal genetic engineering
2025
Cushing’s disease (CD) is a rare neuroendocrine disorder caused by ACTH-secreting pituitary adenomas, presenting significant diagnostic and therapeutic challenges. Given the evolutionary conservation of the hypothalamic–pituitary–adrenal axis, this review explores the translational value of spontaneous CD forms in dogs, horses, cats, small mammals, and rats, as well as of experimental models in mice, rats, and zebrafish. Dogs are the most studied, showing strong molecular and clinical similarities with human CD, making them valuable for preclinical drug and diagnostic research. While equine and feline CD are less characterized, they may provide insights into dopaminergic therapies and glucocorticoid resistance. Nevertheless, practical and ethical challenges limit the experimental use of companion animals. In preclinical research, mouse models are widely used to study hypercortisolism and test therapeutic agents via transgenic and xenograft strategies. Conversely, few studies are available on a zebrafish transgenic model for CD, displaying pituitary corticotroph expansion and partial resistance to glucocorticoid-negative feedback at the larval stage, while adults exhibit hypercortisolism resembling the human phenotype. Future transplantable systems in zebrafish may overcome several limitations observed in mice, supporting CD research. Collectively, these animal models, each offering unique advantages and limitations, provide a diverse toolkit for advancing CD research and improving human clinical outcomes.
Journal Article
Adipocytes in Breast Cancer, the Thick and the Thin
by
Agresti, Roberto
,
Triulzi, Tiziana
,
Trapani, Anna
in
adipocytes
,
Adipocytes - pathology
,
Adipogenesis
2020
It is well established that breast cancer development and progression depend not only on tumor-cell intrinsic factors but also on its microenvironment and on the host characteristics. There is growing evidence that adipocytes play a role in breast cancer progression. This is supported by: (i) epidemiological studies reporting the association of obesity with a higher cancer risk and poor prognosis, (ii) recent studies demonstrating the existence of a cross-talk between breast cancer cells and adipocytes locally in the breast that leads to acquisition of an aggressive tumor phenotype, and (iii) evidence showing that cancer cachexia applies also to fat tissue and shares similarities with stromal-carcinoma metabolic synergy. This review summarizes the current knowledge on the epidemiological link between obesity and breast cancer and outlines the results of the tumor-adipocyte crosstalk. We also focus on systemic changes in body fat in patients with cachexia developed in the course of cancer. Moreover, we discuss and compare adipocyte alterations in the three pathological conditions and the mechanisms through which breast cancer progression is induced.
Journal Article
Wound Healing Fluid Reflects the Inflammatory Nature and Aggressiveness of Breast Tumors
by
Agresti, Roberto
,
Sasso, Marianna
,
Ghirelli, Cristina
in
Blood & organ donations
,
Body Fluids - metabolism
,
Breast cancer
2019
Wound healing fluid that originates from breast surgery increases the aggressiveness of cancer cells that remain after the surgery. We determined the effects of the extent of surgery and tumor-driven remodeling of the surrounding microenvironment on the ability of wound-healing to promote breast cancer progression. In our analysis of a panel of 34 cytokines, chemokines, and growth factors in wound healing fluid, obtained from 27 breast carcinoma patients after surgery, the levels of several small molecules were associated with the extent of cellular damage that was induced by surgery. In addition, the composition of the resulting wound healing fluid was associated with molecular features of the removed tumor. Specifically, IP-10, IL-6, G-CSF, osteopontin, MIP-1a, MIP-1b, and MCP1-MCAF were higher in more aggressive tumors. Altogether, our findings indicate that the release of factors that are induced by removal of the primary tumor and subsequent wound healing is influenced by the extent of damage due to surgery and the reactive stroma that is derived from the continuously evolving network of interactions between neoplastic cells and the microenvironment, based on the molecular characteristics of breast carcinoma cells.
Journal Article
Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences
by
Triulzi, Tiziana
,
Tagliabue, Elda
,
Mangano, Nunzia
in
Adipocytes
,
Adipocytes - immunology
,
Adipocytes - metabolism
2021
Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.
Journal Article
Extracellular Matrix Features Discriminate Aggressive HER2-Positive Breast Cancer Patients Who Benefit from Trastuzumab Treatment
by
Paolini, Biagio
,
De Cecco, Loris
,
Rybinska, Ilona
in
Animals
,
Breast Neoplasms - drug therapy
,
Breast Neoplasms - pathology
2020
We previously identified an extracellular matrix (ECM) gene expression pattern in breast cancer (BC), called ECM3, characterized by a high expression of genes encoding structural ECM proteins. Since ECM is reportedly implicated in response to therapy of BCs, the aim of this work is to investigate the prognostic and predictive value of ECM3 molecular classification in HER2-positive BCs. ECM3 resulted in a robust cluster that identified a subset of 25–37% of HER2-positive tumors with molecular aggressive features. ECM3 was significantly associated with worse prognosis in two datasets of HER2-positive BCs untreated with adjuvant therapy. Analyses carried out on two of our cohorts of patients treated or not with adjuvant trastuzumab showed association of ECM3 with worse prognosis only in patients not treated with trastuzumab. Moreover, investigating a dataset that includes gene profile data of tumors treated with neoadjuvant trastuzumab plus chemotherapy or chemotherapy alone, ECM3 was associated with increased pathological complete response if treated with trastuzumab. In the in vivo experiments, increased diffusion and trastuzumab activity were found in tumors derived from injection of HER2-positive cells with Matrigel that creates an ECM-rich tumor environment. Taken together, these results indicate that HER2-positive BCs classified as ECM3 have an aggressive phenotype but they are sensitive to trastuzumab treatment.
Journal Article
Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms
2015
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Journal Article
Lipofilling in Breast Oncological Surgery: A Safe Opportunity or Risk for Cancer Recurrence?
by
Scoccia, Elisabetta
,
Signati, Lorena
,
Piccotti, Francesca
in
Adipocytes
,
Adipose Tissue - transplantation
,
Breast implants
2021
Lipofilling (LF) is a largely employed technique in reconstructive and esthetic breast surgery. Over the years, it has demonstrated to be extremely useful for treatment of soft tissue defects after demolitive or conservative breast cancer surgery and different procedures have been developed to improve the survival of transplanted fat graft. The regenerative potential of LF is attributed to the multipotent stem cells found in large quantity in adipose tissue. However, a growing body of pre-clinical evidence shows that adipocytes and adipose-derived stromal cells may have pro-tumorigenic potential. Despite no clear indication from clinical studies has demonstrated an increased risk of cancer recurrence upon LF, these observations challenge the oncologic safety of the procedure. This review aims to provide an updated overview of both the clinical and the pre-clinical indications to the suitability and safety of LF in breast oncological surgery. Cellular and molecular players in the crosstalk between adipose tissue and cancer are described, and heterogeneous contradictory results are discussed, highlighting that important issues still remain to be solved to get a clear understanding of LF safety in breast cancer patients.
Journal Article