Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Sénard, Thomas"
Sort by:
FcγR Binding and ADCC Activity of Human IgG Allotypes
Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc-receptor (FcγR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene likely form a layer of variation in the strength of the ADCC-response, but this has never been studied in detail. We produced all 27 known IgG allotypes and assessed FcγRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved similarly within subclass, large allotype-specific variation was found for IgG3. ADCC capacity was affected by residues 291, 292, and 296 in the CH2 domain through altered affinity or avidity for FcγRIIIa. Furthermore, allotypic variation in hinge length affected ADCC, likely through altered proximity at the immunological synapse. Thus, these functional differences between IgG allotypes have important implications for therapeutic applications and susceptibility to infectious-, allo- or auto-immune diseases.
Baseline IgG-Fc N-glycosylation profile is associated with long-term outcome in a cohort of early inflammatory arthritis patients
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease for which prediction of long-term prognosis from disease’s outset is not clinically feasible. The importance of immunoglobulin G (IgG) and its Fc N -glycosylation in inflammation is well-known and studies described its relevance for several autoimmune diseases, including RA. Herein we assessed the association between IgG N -glycoforms and disease prognosis at 2 years in an early inflammatory arthritis cohort. Methods Sera from 118 patients with early inflammatory arthritis naïve to treatment sampled at baseline were used to obtain IgG Fc glycopeptides, which were then analyzed in a subclass-specific manner by liquid chromatography coupled to mass spectrometry (LC-MS). Patients were prospectively followed and a favorable prognosis at 2 years was assessed by a combined index as remission or low disease activity (DAS28 < 3.2) and normal functionality (HAQ ≤ 0.25) while on treatment with conventional synthetic DMARDs and never used biologic DMARDs. Results We observed a significant association between high levels of IgG2/3 Fc galactosylation (effect 0.627 and adjusted p value 0.036 for the fully galactosylated glycoform H5N4F1; effect −0.551 and adjusted p value 0.04963 for the agalactosylated H3N4F1) and favorable outcome after 2 years of treatment. The inclusion of IgG glycoprofiling in a multivariate analysis to predict the outcome (with HAQ, DAS28, RF, and ACPA included in the model) did not improve the prognostic performance of the model. Conclusion Pending confirmation of these findings in larger cohorts, IgG glycosylation levels could be used as a prognostic marker in early arthritis, to overcome the limitations of the current prognostic tools.
MS-Based Allotype-Specific Analysis of Polyclonal IgG-Fc N-Glycosylation
Current approaches to study glycosylation of polyclonal human immunoglobulins G (IgG) usually imply protein digestion or glycan release. While these approaches allow in-depth characterization, they also result in a loss of valuable information regarding certain subclasses, allotypes and co-occuring post-translational modifications (PTMs). Unfortunately, the high variability of polyclonal IgGs makes their intact mass spectrometry (MS) analysis extremely challenging. We propose here a middle-up strategy for the analysis of the intact fragment crystallizable (Fc) region of human plasma IgGs, with the aim of acquiring integrated information of the -glycosylation and other PTMs of subclasses and allotypes. Human plasma IgG was isolated using Fc-specific beads followed by an on-bead C 2 domain digestion with the enzyme IdeS. The obtained mixture of Fc subunits was analyzed by capillary electrophoresis (CE) and hydrophilic interaction liquid chromatography (HILIC) hyphenated with MS. CE-MS provided separation of different IgG-subclasses and allotypes, while HILIC-MS allowed resolution of the different glycoforms and their oxidized variants. The orthogonality of these techniques was key to reliably assign Fc allotypes. Five individual donors were analyzed using this approach. Heterozygosis was observed in all the analyzed donors resulting in a total of 12 allotypes identified. The assignments were further confirmed using recombinant monoclonal IgG allotypes as standards. While the glycosylation patterns were similar within allotypes of the same subclass, clear differences were observed between IgG subclasses and donors, highlighting the relevance of the proposed approach. In a single analysis, glycosylation levels specific for each allotype, relative abundances of subclasses and information on co-occurring modifications are obtained. This middle-up method represents an important step toward a comprehensive analysis of immunoglobulin G-Fc variants.
Site-specific glycosylation mapping of Fc gamma receptor IIIb from neutrophils of health donors
Fc gamma receptors (FcγR) translate antigen-recognition by immunoglobulin G (IgG) into various immune responses. A better understanding of this key element of immunity promises novel insights into mechanisms of (auto-/allo-)immune diseases and more rationally designed antibody-based drugs. Glycosylation on both IgG and FcγR impacts their interaction dramatically. In this study, we developed a straightforward and comprehensive analytical methodology to map FcγRIIIb glycosylation from primary human material. In contrast to recently published alternatives, we assessed all glycosylation sites in a single LC-MS/MS run and simultaneously determined the donor allotype. Studying FcγRIIIb derived from healthy donor neutrophils, we observed profound differences as compared to the soluble variant and the homologous FcγRIIIa on natural killer cells. This method will allow assessment of FcγRIII glycosylation differences between individuals, cell types, subcellular locations and pathophysiological conditions. Competing Interest Statement I.W. is employed by Genos Ltd. and E.L.G is employed by Pepscope Ltd. No potential conflict of interest was reported by the remaining authors.
EFAS/EAN survey on the influence of the COVID-19 pandemic on European clinical autonomic education and research
Purpose To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe. Methods We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders. Results Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent ( n  = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% ( n  = 27/29) established e-learning models. Both the 2020 joint EAN–EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020–2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n  = 16/41) maintained higher clinical caseloads during the first pandemic year. Conclusions The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.
Efficacy of cotrimoxazole (Sulfamethoxazole-Trimethoprim) as a salvage therapy for the treatment of bone and joint infections (BJIs)
Cotrimoxazole (Sulfamethoxazole-Trimethoprim, SXT) has interesting characteristics for the treatment of bone and joint infection (BJI): a broad spectrum of activity with adequate bone diffusion and oral and intravenous formulations. However, its efficacy and safety in BJIs are poorly documented and its use remains limited. We conducted a retrospective study in 2 reference centers for BJIs from 2013 to 2018 among patients treated with SXT for a BJI. Data were collected from patient's medical charts. Outcomes and adverse events were evaluated at day (D)7, D45 and D90. We analyzed 51 patients with a mean age of 60 ± 20 (SD) years of which 76% presented with an orthopedic device infection (ODI). Gram-negative bacilli (GNB) were involved in 47% of BJIs (n = 24). Moreover, they were often polymicrobial infections (41%). Doses of SXT ranged from 800/160mg bid (61%; n = 31) to 800/160mg tid (39%; n = 20). Median SXT treatment duration was 45 days (IQR 40-45). SXT was part of a dual therapy in 84% of patients (n = 43), associated mainly with fluoroquinolones (n = 17) or rifampicin (n = 14). Outcome was favorable at D7 in 98% (n = 50), at D45 in 88.2% (n = 45) and at D90 in 78.4% (n = 40). The second agent combined with SXT was not an independent factor of favorable outcome (p = 0.97). Adverse events were reported in 8% (n = 4) of patients, with a median of 21 days (IQR 20-30) from SXT initiation and led to discontinuation (n = 3). SXT appears to be effective for treatment of BJIs as a salvage therapy, even in GNB or polymicrobial infection, including ODI. Further data are needed to confirm SXT efficacy as an alternative oral regimen in BJIs.
The ACCF/AHA Scientific Statement on Syncope
The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have recently published, in both the Journal of the American College of Cardiology (JACC) and Circulation, a Scientific Statement on the Evaluation of Syncope ('Statement'). This Scientific Statement was commissioned to provide guidance for clinicians regarding the evaluation of patients who present with 'syncope'. The Statement was not intended to be a formal set of practice guidelines. However, in the absence of generally accepted practice guidelines in North America, the Statement's potential impact on clinical care may be more far-reaching than expected; it may erroneously be considered to be the authoritative 'de-facto' guideline document. This commentary, submitted by a multidisciplinary consortium of more than 60 physicians with expertise in the management of transient loss of consciousness (TLOC), points out that in many respects the ACCF/AHA Syncope Statement fails to address long-standing clinical errors associated with the evaluation of episodes of apparent TLOC, including syncope. If not appropriately revised, the current Statement may lead to both inadequate patient care as well as a potentially damaging legal environment for physicians undertaking evaluation of patients who present with transient loss of consciousness.