Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
96 result(s) for "S El Hedri"
Sort by:
Towards an understanding of the correlations in jet substructure
Over the past decade, a large number of jet substructure observables have been proposed in the literature, and explored at the LHC experiments. Such observables attempt to utilize the internal structure of jets in order to distinguish those initiated by quarks, gluons, or by boosted heavy objects, such as top quarks and W bosons. This report, originating from and motivated by the BOOST2013 workshop, presents original particle-level studies that aim to improve our understanding of the relationships between jet substructure observables, their complementarity, and their dependence on the underlying jet properties, particularly the jet radius and jet transverse momentum. This is explored in the context of quark/gluon discrimination, boosted W boson tagging and boosted top quark tagging.
Measurement of neutrino oscillation parameters with the first six detection units of KM3NeT/ORCA
A bstract KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-purity neutrino sample was extracted, corresponding to an exposure of 433 kton-years. The sample of 5828 neutrino candidates is analysed following a binned log-likelihood method in the reconstructed energy and cosine of the zenith angle. The atmospheric oscillation parameters are measured to be sin 2 θ 23 = 0.51 − 0.05 + 0.04 , and Δ m 31 2 = 2.18 − 0.35 + 0.25 × 10 − 3 eV 2 ∪ − 2.25 − 1.76 × 10 − 3 eV 2 at 68% CL. The inverted neutrino mass ordering hypothesis is disfavoured with a p-value of 0.25.
Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions
The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.
Study of tau neutrinos and non-unitary neutrino mixing with the first six detection units of KM3NeT/ORCA
A bstract Oscillations of atmospheric muon and electron neutrinos produce tau neutrinos with energies in the GeV range, which can be observed by the ORCA detector of the KM3NeT neutrino telescope in the Mediterranean Sea. First measurements with ORCA6, an early subarray corresponding to about 5% of the final detector, are presented. A sample of 5828 neutrino candidates has been selected from the analysed exposure of 433 kton-years. The ν τ normalisation, defined as the ratio between the number of observed and expected tau neutrino events, is measured to be S τ = 0.48 − 0.33 + 0.5 . This translates into a ν τ charged-current cross section measurement of σ τ meas = 2.5 − 1.8 + 2.6 × 10 − 38 cm 2 nucleon − 1 at the median ν τ energy of 20.3 GeV. The result is consistent with the measurements of other experiments. In addition, the current limit on the non-unitarity parameter affecting the τ -row of the neutrino mixing matrix was improved, with α 33 > 0.95 at the 95% confidence level.
Probing invisible neutrino decay with the first six detection units of KM3NeT/ORCA
A bstract In the era of precision measurements of neutrino oscillation parameters, it is necessary for experiments to disentangle discrepancies that may indicate physics beyond the Standard Model in the neutrino sector. KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study the oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on the initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photosensors. A high-purity neutrino sample was extracted during 2020 and 2021, corresponding to an exposure of 433 kton-years. This sample is analysed following a binned log-likelihood approach to search for invisible neutrino decay, in a three-flavour neutrino oscillation scenario, where the third neutrino mass state ν 3 decays into an invisible state, e.g. a sterile neutrino. The resulting best fit of the invisible neutrino decay parameter is α 3 = 0.92 − 0.57 + 1.08 × 10 − 4 eV 2 , corresponding to a scenario with θ 23 in the second octant and normal neutrino mass ordering. The results are consistent with the Standard Model, within a 2.1 σ interval.
Probing invisible neutrino decay with KM3NeT/ORCA
A bstract In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state ν 3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1 /α 3 = τ 3 /m 3 < 180 ps / eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for θ 23 , Δ m 31 2 and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.
First observation of the cosmic ray shadow of the Moon and the Sun with KM3NeT/ORCA
This article reports the first observation of the Moon and the Sun shadows in the sky distribution of cosmic-ray induced muons measured by the KM3NeT/ORCA detector. The analysed data-taking period spans from February 2020 to November 2021, when the detector had 6 Detection Units deployed at the bottom of the Mediterranean Sea, each composed of 18 Digital Optical Modules. The shadows induced by the Moon and the Sun were detected at their nominal position with a statistical significance of 4.2 σ and 6.2 σ , and an angular resolution of σ res = 0 . 49 ∘ and σ res = 0 . 66 ∘ , respectively, consistent with the prediction of 0 . 53 ∘ from simulations. This early result confirms the effectiveness of the detector calibration, in time, position and orientation and the accuracy of the event direction reconstruction. This also demonstrates the performance and the competitiveness of the detector in terms of pointing accuracy and angular resolution.
Search for tens of MeV neutrinos associated with gamma-ray bursts in Super-Kamiokande
Abstract A search for neutrinos produced in coincidence with gamma-ray bursts (GRBs) was conducted with the Super-Kamiokande (SK) detector. Between December 2008 and March 2017, the Gamma-ray Coordinates Network recorded 2208 GRBs that occurred during normal SK operation. Several time windows around each GRB were used to search for coincident neutrino events. No statistically significant signal in excess of the estimated backgrounds was detected. The $\\bar\\nu_e$ fluence in the range from 8 MeV to 100 MeV in positron total energy for $\\bar\\nu_e+p\\rightarrow e^{+}+n$ was found to be less than $\\rm 5.07\\times10^5$ cm$^{-2}$ per GRB at a 90% confidence level. For all GRBs, upper bounds were obtained on the fluence as a function of neutrino energy. Additionally, for GRBs at known distances, upper limits were set for the neutrino energy emission at the GRB.
Observation of an ultra-high-energy cosmic neutrino with KM3NeT
The detection of cosmic neutrinos with energies above a teraelectronvolt (TeV) offers a unique exploration into astrophysical phenomena 1 , 2 – 3 . Electrically neutral and interacting only by means of the weak interaction, neutrinos are not deflected by magnetic fields and are rarely absorbed by interstellar matter: their direction indicates that their cosmic origin might be from the farthest reaches of the Universe. High-energy neutrinos can be produced when ultra-relativistic cosmic-ray protons or nuclei interact with other matter or photons, and their observation could be a signature of these processes. Here we report an exceptionally high-energy event observed by KM3NeT, the deep-sea neutrino telescope in the Mediterranean Sea 4 , which we associate with a cosmic neutrino detection. We detect a muon with an estimated energy of 12 0 − 60 + 110 petaelectronvolts (PeV). In light of its enormous energy and near-horizontal direction, the muon most probably originated from the interaction of a neutrino of even higher energy in the vicinity of the detector. The cosmic neutrino energy spectrum measured up to now 5 , 6 – 7 falls steeply with energy. However, the energy of this event is much larger than that of any neutrino detected so far. This suggests that the neutrino may have originated in a different cosmic accelerator than the lower-energy neutrinos, or this may be the first detection of a cosmogenic neutrino 8 , resulting from the interactions of ultra-high-energy cosmic rays with background photons in the Universe. A very high-energy muon observed by the KM3NeT experiment in the Mediterranean Sea is evidence for the interaction of an exceptionally high-energy neutrino of cosmic origin.