Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,245 result(s) for "SANTOS, ANDRES"
Sort by:
USING INSTRUMENTAL VARIABLES FOR INFERENCE ABOUT POLICY RELEVANT TREATMENT PARAMETERS
We propose a method for using instrumental variables (IV) to draw inference about causal effects for individuals other than those affected by the instrument at hand. Policy relevance and external validity turn on the ability to do this reliably. Our method exploits the insight that both the IV estimand and many treatment parameters can be expressed as weighted averages of the same underlying marginal treatment effects. Since the weights are identified, knowledge of the IV estimand generally places some restrictions on the unknown marginal treatment effects, and hence on the values of the treatment parameters of interest. We show how to extract information about the treatment parameter of interest from the IV estimand and, more generally, from a class of IV-like estimands that includes the two stage least squares and ordinary least squares estimands, among others. Our method has several applications. First, it can be used to construct nonparametric bounds on the average causal effect of a hypothetical policy change. Second, our method allows the researcher to flexibly incorporate shape restrictions and parametric assumptions, thereby enabling extrapolation of the average effects for compilers to the average effects for different or larger populations. Third, our method can be used to test model specification and hypotheses about behavior, such as no selection bias and/or no selection on gain.
On the First Quantum Correction to the Second Virial Coefficient of a Generalized Lennard-Jones Fluid
We derive an explicit analytic expression for the first quantum correction to the second virial coefficient of a -dimensional fluid whose particles interact via the generalized Lennard-Jones (2n,n) potential. By introducing an appropriate change of variable, the correction term is reduced to a single integral that can be evaluated in closed form in terms of parabolic cylinder or generalized Hermite functions. The resulting expression compactly incorporates both dimensionality and stiffness, providing direct access to the low- and high-temperature asymptotic regimes. In the special case of the standard Lennard-Jones fluid (d=3, n=6), the formula obtained is considerably more compact than previously reported representations based on hypergeometric functions. The knowledge of this correction allows us to determine the first quantum contribution to the Boyle temperature, whose dependence on dimensionality and stiffness is explicitly analyzed, and enables quantitative assessment of quantum effects in noble gases such as helium, neon, and argon. Moreover, the same methodology can be systematically extended to obtain higher-order quantum corrections.
Exact Transport Coefficients from the Inelastic Rough Maxwell Model of a Granular Gas
Granular gases demand models capable of capturing their distinct characteristics. The widely employed inelastic hard-sphere model (IHSM) introduces complexities that are compounded when incorporating realistic features like surface roughness and rotational degrees of freedom, resulting in the more intricate inelastic rough hard-sphere model (IRHSM). This paper focuses on the inelastic rough Maxwell model (IRMM), presenting a more tractable alternative to the IRHSM and enabling exact solutions. Building on the foundation of the inelastic Maxwell model (IMM) applied to granular gases, the IRMM extends the mathematical representation to encompass surface roughness and rotational degrees of freedom. The primary objective is to provide exact expressions for the Navier–Stokes–Fourier transport coefficients within the IRMM, including the shear and bulk viscosities, the thermal and diffusive heat conductivities, and the cooling-rate transport coefficient. In contrast to earlier approximations in the IRHSM, our study unveils inherent couplings, such as shear viscosity to spin viscosity and heat conductivities to counterparts associated with a torque-vorticity vector. These exact findings provide valuable insights into refining the Sonine approximation applied to the IRHSM, contributing to a deeper understanding of the transport properties in granular gases with realistic features.
Brainstorm Pipeline Analysis of Resting-State Data From the Open MEG Archive
We present a simple, reproducible analysis pipeline applied to resting-state magnetoencephalography (MEG) data from the Open MEG Archive (OMEGA). The data workflow was implemented with Brainstorm, which like OMEGA is free and openly accessible. The proposed pipeline produces group maps of ongoing brain activity decomposed in the typical frequency bands of electrophysiology. The procedure is presented as a technical proof of concept for streamlining a broader range and more sophisticated studies of resting-state electrophysiological data. It also features the recently introduced extension of the brain imaging data structure (BIDS) to MEG data, highlighting the scalability and generalizability of Brainstorm analytical pipelines to other, and potentially larger data volumes.
Kinetic Theory and Memory Effects of Homogeneous Inelastic Granular Gases under Nonlinear Drag
We study a dilute granular gas immersed in a thermal bath made of smaller particles with masses not much smaller than the granular ones in this work. Granular particles are assumed to have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force plus a white-noise stochastic force. The kinetic theory for this system is described by an Enskog–Fokker–Planck equation for the one-particle velocity distribution function. To get explicit results of the temperature aging and steady states, Maxwellian and first Sonine approximations are developed. The latter takes into account the coupling of the excess kurtosis with the temperature. Theoretical predictions are compared with direct simulation Monte Carlo and event-driven molecular dynamics simulations. While good results for the granular temperature are obtained from the Maxwellian approximation, a much better agreement, especially as inelasticity and drag nonlinearity increase, is found when using the first Sonine approximation. The latter approximation is, additionally, crucial to account for memory effects such as Mpemba and Kovacs-like ones.
A new spinosaurid dinosaur species from the Early Cretaceous of Cinctorres (Spain)
A new spinosaurid genus and species is described based on the right maxilla and five caudal vertebrae of a single specimen from the Arcillas de Morella Formation (Early Cretaceous) at the locality of Cinctorres (Castellón, Spain). Protathlitis cinctorrensis gen. et sp. nov. is diagnosed by one autapomorphic feature as well as by a unique combination of characters. The autapomorphy includes a subcircular depression in the anterior corner of the antorbital fossa in the maxilla. The new Iberian species is recovered as a basal baryonychine. The recognition of Protathlitis cinctorrensis gen. et sp. nov. as the first baryonychine dinosaur species identified from the Arcillas de Morella Formation (late Barremian) from the same time as Vallibonavenatrix cani, the first spinosaurine dinosaur from the same formation in the Morella subbasin (Maestrat Basin, eastern Spain), indicates that the Iberian Peninsula was home to a highly diverse assemblage of medium-to-large bodied spinosaurid dinosaurs. It seems that spinosaurids appeared during the Early Cretaceous in Laurasia, with the two subfamilies occupying the western part of Europe during this period. Later, during the Barremian–Aptian, they migrated to Africa and Asia, where they would diversify. In Europe, baryonychines were dominant, while in Africa, spinosaurines were most abundant.
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
Finding the proper entropy-like Lyapunov functional associated with the inelastic Boltzmann equation for an isolated freely cooling granular gas is a still unsolved challenge. The original H-theorem hypotheses do not fit here and the H-functional presents some additional measure problems that are solved by the Kullback–Leibler divergence (KLD) of a reference velocity distribution function from the actual distribution. The right choice of the reference distribution in the KLD is crucial for the latter to qualify or not as a Lyapunov functional, the asymptotic “homogeneous cooling state” (HCS) distribution being a potential candidate. Due to the lack of a formal proof far from the quasielastic limit, the aim of this work is to support this conjecture aided by molecular dynamics simulations of inelastic hard disks and spheres in a wide range of values for the coefficient of restitution (α) and for different initial conditions. Our results reject the Maxwellian distribution as a possible reference, whereas they reinforce the HCS one. Moreover, the KLD is used to measure the amount of information lost on using the former rather than the latter, revealing a non-monotonic dependence with α.
Discontinuous Structural Transitions in Fluids with Competing Interactions
This paper explores how competing interactions in the intermolecular potential of fluids affect their structural transitions. This study employs a versatile potential model with a hard core followed by two constant steps, representing wells or shoulders, analyzed in both one-dimensional (1D) and three-dimensional (3D) systems. Comparing these dimensionalities highlights the effect of confinement on structural transitions. Exact results are derived for 1D systems, while the rational function approximation is used for unconfined 3D fluids. Both scenarios confirm that when the steps are repulsive, the wavelength of the oscillatory decay of the total correlation function evolves with temperature either continuously or discontinuously. In the latter case, a discontinuous oscillation crossover line emerges in the temperature–density plane. For an attractive first step and a repulsive second step, a Fisher–Widom line appears. Although the 1D and 3D results share common features, dimensionality introduces differences: these behaviors occur in distinct temperature ranges, require deeper wells, or become attenuated in 3D. Certain features observed in 1D may vanish in 3D. We conclude that fluids with competing interactions exhibit a rich and intricate pattern of structural transitions, demonstrating the significant influence of dimensionality and interaction features.
A new styracosternan hadrosauroid (Dinosauria: Ornithischia) from the Early Cretaceous of Portell, Spain
A new styracosternan ornithopod genus and species is described based on the right dentary of a single specimen from the Mirambell Formation (Early Cretaceous, early Barremian) at the locality of Portell, (Castellón, Spain). Portellsaurus sosbaynati gen. et sp. nov. is diagnosed by two autapomorphic features as well as a unique combination of characters. The autapomorphies include: the absence of a bulge along the ventral margin directly ventral to the base of the coronoid process and the presence of a deep oval cavity on the medial surface of the mandibular adductor fossa below the eleventh-twelfth tooth position. Phylogenetic analyses reveal that the new Iberian form is more closely related to the African taxon Ouranosaurus nigeriensis than to its synchronic Iberian taxa Magnamanus soriaensis and Iguanodon galvensis. In addition, Portellsaurus sosbaynati is less related to other Iberian taxa such as Iguanodon bernissartensis and Proa valdearinnoensis than to the other Early Cretaceous Iberian styracosternans Mantellisaurus atherfieldensis and Morelladon beltrani. A new phylogenetic hypothesis is proposed that resolves Iguanodon (I. bernissartensis, I. galvensis) with the Valanginian Barilium dawsoni into a monophyletic clade (Iguanodontoidea). The recognition of Portellsaurus sosbaynati gen. et sp. nov. as the first styracosternan dinosaur species identified from the Margas de Mirambell Formation (early Barremian–early late Barremian) in the Morella sub-basin (Maestrat Basin, eastern Spain) indicates that the Iberian Peninsula was home to a highly diverse assemblage of medium-to-large bodied styracosternan hadrosauriforms during the Early Cretaceous.
Driven and undriven states of multicomponent granular gases of inelastic and rough hard disks or spheres
Starting from a recent derivation of the energy production rates in terms of the number of translational and rotational degrees of freedom, a comparative study on different granular temperatures in gas mixtures of inelastic and rough disks or spheres is carried out. Both the homogeneous freely cooling state and the state driven by a stochastic thermostat are considered. It is found that the relaxation number of collisions per particle is generally smaller for disks than for spheres, the mean angular velocity relaxing more rapidly than the temperature ratios. In the asymptotic regime of the undriven system, the rotational-translational nonequipartition is stronger in disks than in spheres, while it is hardly dependent on the class of particles in the driven system. On the other hand, the degree of component-component nonequipartition is higher for spheres than for disks, both for driven and undriven systems. A study of the mimicry effect (whereby a multicomponent gas mimics the rotational-translational temperature ratio of a monocomponent gas) is also undertaken.