Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
73 result(s) for "STAHLE, David W"
Sort by:
Long-term aridity changes in the western United States
The western United States is experiencing a severe multiyear drought that is unprecedented in some hydroclimatic records. Using gridded drought reconstructions that cover most of the western United States over the past 1200 years, we show that this drought pales in comparison to an earlier period of elevated aridity and epic drought in AD 900 to 1300, an interval broadly consistent with the Medieval Warm Period. If elevated aridity in the western United States is a natural response to climate warming, then any trend toward warmer temperatures in the future could lead to a serious long-term increase in aridity over western North America.
Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem
Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.
Placing the east-west North American aridity gradient in a multi-century context
Instrumental records indicate a century-long trend towards drying over western North America and wetting over eastern North America. A continuation of these trends into the future would have significant hydroclimatic and socioeconomic consequences in both the semi-arid Southwest and humid East. Using tree-ring reconstructions and hydrologic simulations of summer soil moisture, we evaluate and contextualize the modern summer aridity gradient within its natural range of variability established over the past 600 years and evaluate the effects of observed and anthropogenic precipitation, temperature, and humidity trends. The 2001–2020 positive (wet east-dry west) aridity gradient was larger than any 20-year period since 1400 CE, preceded by the most negative (wet west-dry east) aridity gradient during 1976-1995, leading to a strong multi-decade reversal in aridity gradient anomalies that was rivaled only by a similar event in the late-16th century. The 2001-2020 aridity gradient was dominated by long-term summer precipitation increases in the Midwest and Northeast, with smaller contributions from more warming in the West than the East and spring precipitation decreases in the Southwest. Multi-model mean climate simulations from CMIP6 experiments suggest anthropogenic climate trends should not have strongly affected the aridity gradient thus far. However, there is high uncertainty due to inter-model disagreement on anthropogenic precipitation trends. The recent strengthening of the observed aridity gradient, its increasing dependence on precipitation variability, and disagreement in modeled anthropogenic precipitation trends reveal significant uncertainties in how water resource availability will change across North America in the coming decades.
Drought Reconstructions for the Continental United States
The development of a 2° lat × 3° long grid of summer drought reconstructions for the continental United States estimated from a dense network of annual tree-ring chronologies is described. The drought metric used is the Palmer Drought Severity Index (PDSI). The number of grid points is 154 and the reconstructions cover the common period 1700–1978. In producing this grid, an automated gridpoint regression method called “point-by-point regression” was developed and tested. In so doing, a near-optimal global solution was found for its implementation. The reconstructions have been thoroughly tested for validity using PDSI data not used in regression modeling. In general, most of the gridpoint estimates of drought pass the verification tests used. In addition, the spatial features of drought in the United States have been faithfully recorded in the reconstructions even though the method of reconstruction is not explicitly spatial in its design. The drought reconstructions show that the 1930s “Dust Bowl” drought was the most severe such event to strike the United States since 1700. Other more local droughts are also revealed in the regional patterns of drought obtained by rotated principal component analysis. These reconstructions are located on a NOAA Web site at the World Data Center-A in Boulder, Colorado, and can be freely downloaded from there.
Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico
The forests of northern Mexico and the southwestern United States have been subjected to warmer temperatures, persistent drought, and more intense and widespread wildfire. Tree-ring data from four conifer species native to these borderlands forests are compared with regional and large-scale precipitation and temperature data. These species include Abies durangensis, Pinus arizonica, Pinus cembroides, and Pseudotsuga menziesii. Twelve detrended and standardized ring-width chronologies are derived for these four species, all are cross-correlated during their common interval of 1903–2000 (r = 0.567 to 0.738, p < 0.01), and all load positively on the first principal component of radial growth, which alone represents 56% of the variance in the correlation matrix. Correlation with monthly precipitation and temperature data for the study area indicates that all four species respond primarily to precipitation during the cool season of autumn and winter, October–May (r = 0.71, p < 0.01, 1931–2000), and to temperature primarily during the late spring and early summer, January–July (r 0 −0.67, p < 0.01, 1931–2000), in spite of differences in phylogeny and microsite conditions. The instrumental climate data for the region indicate that warmer conditions during the January–July season most relevant to radial growth are beginning to exceed the warmest episode of the 20th century in both intensity and duration. The strong negative correlation between temperature and tree growth indicates that these four conifer species may be challenged by the warmer temperatures forecast in the coming decades for the borderlands region due to anthropogenic forcing. This information could constitute a baseline to analyze the impact of climate change in other regions of Mexico and the USA, where conifer species are of great ecological and socioeconomical importance.
Tree-ring reconstructed rainfall variability in Zimbabwe
We present the first tree-ring reconstruction of rainfall in tropical Africa using a 200-year regional chronology based on samples of Pterocarpus angolensis from Zimbabwe. The regional chronology is significantly correlated with summer rainfall (November-February) from 1901 to 1948, and the derived reconstruction explains 46% of the instrumental rainfall variance during this period. The reconstruction is well correlated with indices of the El Nino-southern oscillation (ENSO), and national maize yields. An aridity trend in instrumental rainfall beginning in about 1960 is partially reproduced in the reconstruction, and similar trends are evident in the nineteenth century. A decadal-scale drought reconstructed from 1882 to 1896 matches the most severe sustained drought during the instrumental period (1989-1995), and is confirmed in part by documentary evidence. An even more severe drought is indicated from 1859 to 1868 in both the tree-ring and documentary data, but its true magnitude is uncertain. A 6-year wet period at the turn of the nineteenth century (1897-1902) exceeds any wet episode during the instrumental era. The reconstruction exhibits spectral power at ENSO, decadal and multi-decadal frequencies. Composite analysis of global sea surface temperature during unusually wet and dry years also suggests a linkage between reconstructed rainfall and ENSO.
Tree-Ring Reconstruction of Single-Day Precipitation Totals over Eastern Colorado
Abstract Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.
Separate tree-ring reconstructions of spring and summer moisture in the northern and southern Great Plains
The two most severe droughts to impact the Great Plains in the twentieth century, the 1930s Dust Bowl and 1950s Drought, were the result of multiyear moisture deficits during the spring and especially the summer season. Tree-ring reconstructions of the Palmer Drought Severity Index indicate similar droughts in magnitude have occurred in previous centuries, but these reconstructions do not capture the potential distinct seasonal drought characteristics like those of the 1930s and 1950s. Separate tree-ring reconstructions of the spring and summer Z-index based on earlywood, latewood, and adjusted latewood width chronologies have been developed for two regions in the northern and southern Great Plains of the US. The reconstructions extend from 1651 to 1990 and 1698–1990, respectively, with instrumental data added from 1991 to 2017. The four reconstructions explain from 39 to 56% of the variance during the 1945–1990 calibration interval and are significantly correlated with independent moisture balance observations during the 1900–1944 validation period. The reconstructions reproduce similar seasonal sea-surface temperature and 500 mb geopotential height spatial correlation patterns detected with the instrumental data. The 1930s is estimated to have been the most extreme decadal summer drought to impact the two regions concurrently in the last few centuries. On average, spring moisture deficits were more severe during the multidecadal droughts of the mid- to late-nineteenth century, but the timing of drought onset and termination differed between the study regions. In the recent two decades the spring moisture balances for the two study regions have largely been opposite, and this has been one of the most extreme periods of anti-phasing in the last few centuries. Seasonal moisture reversals are not randomly distributed in time based on the reconstructed estimates and are related to sea-surface temperature anomalies in the tropical Pacific and to mid-tropospheric circulation changes over the North Pacific–North American sector during May and June.
Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America
Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.