Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
106 result(s) for "Sabatie, F"
Sort by:
From hard exclusive meson electroproduction to deeply virtual Compton scattering
We systematically evaluate observables for hard exclusive electroproduction of real photons and compare them to experiment using a set of Generalized Parton Distributions (GPDs) whose parameters are constrained by Deeply Virtual Meson Production data, nucleon form factors and parton distributions. The Deeply Virtual Compton Scattering amplitudes are calculated to leading-twist accuracy and leading order in QCD perturbation theory while the leptonic tensor is treated exactly, without any approximation. This study constitutes a check of the universality of the GPDs. We summarize all relevant details on the parameterizations of the GPDs and describe its use in the handbag approach of the aforementioned hard scattering processes. We observe good agreement between predictions and measurements of deeply virtual Compton scattering on a wide kinematic range, including most data from H1, ZEUS, HERMES, Hall A and CLAS collaborations for unpolarized and polarized targets when available. We also give predictions relevant for future experiments at COMPASS and JLab after the 12 GeV upgrade.
Momentum sharing in imbalanced Fermi systems
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin–state, ultracold atomic gas systems.
From hard exclusive meson electroproduction to Deeply Virtual Compton Scattering
We systematically evaluate observables for hard exclusive electroproduction of real photons and compare them to experiment using a set of Generalized Parton Distributions (GPDs) whose parameters are constrained by Deeply Virtual Meson Production data, nucleon form factors and parton distributions. The Deeply Virtual Compton Scattering amplitudes are calculated to leading-twist accuracy and leading order in QCD perturbation theory while the leptonic tensor is treated exactly, without any approximation. This study constitutes a check of the universality of the GPDs. We summarize all relevant details on the parameterizations of the GPDs and describe its use in the handbag approach of the aforementioned hard scattering processes. We observe good agreement between predictions and measurements of deeply virtual Compton scattering on a wide kinematic range, including most data from H1, ZEUS, HERMES, Hall A and CLAS collaborations for unpolarized and polarized targets when available. We also give predictions relevant for future experiments at COMPASS and JLab after the 12 GeV upgrade.
PARTONS: PARtonic Tomography Of Nucleon Software
We describe the architecture and functionalities of a C++ software framework, coined PARTONS, dedicated to the phenomenology of Generalized Parton Distributions. These distributions describe the three-dimensional structure of hadrons in terms of quarks and gluons, and can be accessed in deeply exclusive lepto- or photo-production of mesons or photons. PARTONS provides a necessary bridge between models of Generalized Parton Distributions and experimental data collected in various exclusive production channels. We outline the specification of the PARTONS framework in terms of practical needs, physical content and numerical capacity. This framework will be useful for physicists – theorists or experimentalists – not only to develop new models, but also to interpret existing measurements and even design new experiments.
Modified structure of protons and neutrons in correlated pairs
The atomic nucleus is made of protons and neutrons (nucleons), which are themselves composed of quarks and gluons. Understanding how the quark–gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification—known as the EMC effect—was first observed over 35 years ago, there is still no generally accepted explanation for its cause 1 – 3 . Recent observations suggest that the EMC effect is related to close-proximity short-range correlated (SRC) nucleon pairs in nuclei 4 , 5 . Here we report simultaneous, high-precision measurements of the EMC effect and SRC abundances. We show that EMC data can be explained by a universal modification of the structure of nucleons in neutron–proton SRC pairs and present a data-driven extraction of the corresponding universal modification function. This implies that in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have distorted quark structure. This universal modification function will be useful for determining the structure of the free neutron and thereby testing quantum chromodynamics symmetry-breaking mechanisms and may help to discriminate between nuclear physics effects and beyond-the-standard-model effects in neutrino experiments. Simultaneous high-precision measurements of the EMC effect and short-range correlated abundances for several nuclei reveal a universal modification of the structure of nucleons in short-range correlated neutron–proton pairs.
Probing high-momentum protons and neutrons in neutron-rich nuclei
The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs 1 – 12 with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. Here we measure protons and, for the first time, neutrons knocked out of medium-to-heavy nuclei by high-energy electrons and show that the fraction of high-momentum protons increases markedly with the neutron excess in the nucleus, whereas the fraction of high-momentum neutrons decreases slightly. This effect is surprising because in the classical nuclear shell model, protons and neutrons obey Fermi statistics, have little correlation and mostly fill independent energy shells. These high-momentum nucleons in neutron-rich nuclei are important for understanding nuclear parton distribution functions (the partial momentum distribution of the constituents of the nucleon) and changes in the quark distributions of nucleons bound in nuclei (the EMC effect) 1 , 13 , 14 . They are also relevant for the interpretation of neutrino-oscillation measurements 15 and understanding of neutron-rich systems such as neutron stars 3 , 16 . Electron-scattering experiments reveal that the fraction of high-momentum protons in medium-to-heavy nuclei increases considerably with neutron excess, whereas that of high-momentum neutrons decreases slightly, in contrast to shell-model predictions.
Measurement of the proton spin structure at long distances
Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances, the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV2. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, for example, in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov–Drell–Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections.Measurements of the proton’s spin structure in experiments scattering a polarized electron beam off polarized protons in regions of low momentum transfer squared test predictions from chiral effective field theory of the strong interaction.
A glimpse of gluons through deeply virtual compton scattering on the proton
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction. It remains a challenge to find the structure and the distribution of the constituents of nucleons. Here the authors use a scattering method to get information about the gluons and quarks inside a proton and separate the contribution of Bethe-Heitler from the deeply virtual Compton scattering process.
Deeply virtual Compton scattering off the neutron
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high-energy electron is scattered off a nucleon by exchanging a virtual photon. Then, a highly energetic real photon is emitted from one of the quarks inside the nucleon, which carries information on the quark’s transverse position and longitudinal momentum. By measuring the cross-section of deeply virtual Compton scattering, Compton form factors related to the generalized parton distributions can be extracted. Here, we report the observation of unpolarized deeply virtual Compton scattering off a deuterium target. From the measured photon-electroproduction cross-sections, we have extracted the cross-section of a quasifree neutron and a coherent deuteron. Due to the approximate isospin symmetry of quantum chromodynamics, we can determine the contributions from the different quark flavours to the helicity-conserved Compton form factors by combining our measurements with previous ones probing the proton’s internal structure. These results advance our understanding of the description of the nucleon structure, which is important to solve the proton spin puzzle. The internal structure of the neutron has now been probed by highly energetic photons scattering off it. Combined with previous results for protons, these measurements reveal the contributions of quark flavours to the nucleon structure.
Probing the core of the strong nuclear interaction
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances 1 – 5 but not at shorter distances. This limits our ability to describe high-density nuclear matter such as that in the cores of neutron stars 6 . Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations 7 – 9 , accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta between the pair above 400 megaelectronvolts per c ( c , speed of light in vacuum). As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force. These results demonstrate the usefulness of using such measurements to study the nuclear interaction at short distances and also support the use of point-like nucleon models with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of the nucleus. High-energy electron scattering that can isolate pairs of nucleons in high-momentum configurations reveals a transition to spin-independent scalar forces at small separation distances, supporting the use of point-like nucleon models to describe dense nuclear systems.