Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Sagaidak, Maria O."
Sort by:
Mycobacterium tuberculosis Type II Toxin-Antitoxin Systems: Genetic Polymorphisms and Functional Properties and the Possibility of Their Use for Genotyping
Various genetic markers such as IS-elements, DR-elements, variable number tandem repeats (VNTR), single nucleotide polymorphisms (SNPs) in housekeeping genes and other groups of genes are being used for genotyping. We propose a different approach. We suggest the type II toxin-antitoxin (TA) systems, which play a significant role in the formation of pathogenicity, tolerance and persistence phenotypes, and thus in the survival of Mycobacterium tuberculosis in the host organism at various developmental stages (colonization, infection of macrophages, etc.), as the marker genes. Most genes of TA systems function together, forming a single network: an antitoxin from one pair may interact with toxins from other pairs and even from other families. In this work a bioinformatics analysis of genes of the type II TA systems from 173 sequenced genomes of M. tuberculosis was performed. A number of genes of type II TA systems were found to carry SNPs that correlate with specific genotypes. We propose a minimally sufficient set of genes of TA systems for separation of M. tuberculosis strains at nine basic genotype and for further division into subtypes. Using this set of genes, we genotyped a collection consisting of 62 clinical isolates of M. tuberculosis. The possibility of using our set of genes for genotyping using PCR is also demonstrated.
Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima
Mitochondrial dysfunction and oxidative stress are likely involved in atherogenesis. Since the mitochondrial genome variation can alter functional activity of cells, it is necessary to assess the presence in atherosclerotic lesions of mitochondrial DNA (mtDNA) heteroplasmic mutations known to be associated with different pathological processes and ageing. In this study, mtDNA heteroplasmy and copy number (mtCN) were evaluated in the autopsy-derived samples of aortic intima differing by the type of atherosclerotic lesions. To detect mtDNA heteroplasmic variants, next generation sequencing was used, and mtCN measurement was performed by qPCR. It was shown that mtDNA heteroplasmic mutations are characteristic for particular areas of intimal tissue; in 83 intimal samples 55 heteroplasmic variants were found; mean minor allele frequencies level accounted for 0.09, with 12% mean heteroplasmy level. The mtCN variance measured in adjacent areas of intima was high, but atherosclerotic lesions and unaffected intima did not differ significantly in mtCN values. Basing on the ratio of minor and major nucleotide mtDNA variants, we can conclude that there exists the increase in the number of heteroplasmic mtDNA variants, which corresponds to the extent of atherosclerotic morphologic phenotype.
Mycobacterium tuberculosis Type II Toxin-Antitoxin Systems: Genetic Polymorphisms and Functional Properties and the Possibility of Their Use for Genotyping: e0143682
Various genetic markers such as IS-elements, DR-elements, variable number tandem repeats (VNTR), single nucleotide polymorphisms (SNPs) in housekeeping genes and other groups of genes are being used for genotyping. We propose a different approach. We suggest the type II toxin-antitoxin (TA) systems, which play a significant role in the formation of pathogenicity, tolerance and persistence phenotypes, and thus in the survival of Mycobacterium tuberculosis in the host organism at various developmental stages (colonization, infection of macrophages, etc.), as the marker genes. Most genes of TA systems function together, forming a single network: an antitoxin from one pair may interact with toxins from other pairs and even from other families. In this work a bioinformatics analysis of genes of the type II TA systems from 173 sequenced genomes of M. tuberculosis was performed. A number of genes of type II TA systems were found to carry SNPs that correlate with specific genotypes. We propose a minimally sufficient set of genes of TA systems for separation of M. tuberculosis strains at nine basic genotype and for further division into subtypes. Using this set of genes, we genotyped a collection consisting of 62 clinical isolates of M. tuberculosis. The possibility of using our set of genes for genotyping using PCR is also demonstrated.