Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Sagredo, Boris"
Sort by:
Prunus Hexokinase 3 genes alter primary C-metabolism and promote drought and salt stress tolerance in Arabidopsis transgenic plants
by
Bastías, Adriana
,
Araújo, Wagner L.
,
Pozo, María Francisca
in
631/449/2491/2046
,
631/449/2661/2665
,
Amino Acid Sequence
2021
Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (
HXK3
s) from two Prunus rootstock genotypes, ‘M.2624’ (
Prunus cerasifera
Ehrh ×
P. munsoniana
W.Wight & Hedrick) and ‘M.F12/1’ (
P. avium
L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this
HXK3-like
gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of
HXK3
genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing
Prunus HXK3
genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that
Prunus HXK3
is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.
Journal Article
RNAseq reveals different transcriptomic responses to GA3 in early and midseason varieties before ripening initiation in sweet cherry fruits
2021
Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA
3
), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (
Prunus avium
L.), though causing different effects depending on the variety. Recently, we reported that GA
3
delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA
3
did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA
3
applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA
3
produced fruits with less color in both varieties. Similar to our previous report, GA
3
delayed fruit color initiation and IAD only in the mid-season variety and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control- and GA
3
-treated fruits revealed that ripening-related categories were overrepresented in the early-season variety, including ‘photosynthesis’ and ‘auxin response’. GA
3
also changed the expression of carotenoid and abscisic acid (ABA) biosynthetic genes in this variety. In contrast, overrepresented categories in the mid-season variety were mainly related to metabolic processes. In this variety, some
PP2Cs
putative genes were positively regulated by GA
3
, which are negative regulators of ABA responses, and
MYB44-
like genes (putative repressors of
PP2Cs
expression) were downregulated. These results show that GA
3
differentially modulates the transcriptome at the onset of ripening in a variety-dependent manner and suggest that GA
3
impairs ripening through the modification of ripening associated gene expression only in the early-season variety; whereas in the mid-season variety, control of the ripening timing may occur through the
PP2C
gene expression regulation. This work contributes to the understanding of the role of GA in non-climacteric fruit ripening.
Journal Article
Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS)
by
Muñoz, Carlos
,
Gainza, Felipe
,
Solís, Simón
in
Bioinformatics
,
Breeding
,
Chromosome Mapping - methods
2015
Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.
Journal Article
Identifying and validating housekeeping hybrid Prunus spp. genes for root gene-expression studies
by
Bastias, Adriana
,
Correa, Francisco
,
Sagredo, Boris
in
Abiotic stress
,
Adenosine triphosphatase
,
Algorithms
2020
Prunus rootstock belonging to subgenera Amygdalus (peach), Prunus (plum) and Cerasus (cherry) are either from the same species as the scion or another one. The number of inter-species (including inter-subgenera) hybrids has increased as a result of broadening the genetic basis for stress (biotic and abiotic) resistance/tolerance. Identifying genes associated with important traits and responses requires expression analysis. Relative quantification is the simplest and most popular alternative, which requires reference genes (housekeeping) to normalize RT-qPCR data. However, there is a scarcity of validated housekeeping genes for hybrid Prunus rootstock species. This research aims to increase the number of housekeeping genes suitable for Prunus rootstock expression analysis. Twenty-one candidate housekeeping genes were pre-selected from previous RNAseq data that compared the response of root transcriptomes of two rootstocks subgenera to hypoxia treatment, 'Mariana 2624' (P. cerasifera Ehrh.× P. munsoniana W. Wight & Hedrick), and 'Mazzard F12/1' (P. avium L.). Representing groups of low, intermediate or high levels of expression, the genes were assayed by RT-qPCR at 72 hours of hypoxia treatment and analyzed with NormFinder software. A sub-set of seven housekeeping genes that presented the highest level of stability were selected, two with low levels of expression (Unknown 3, Unknown 7) and five with medium levels (GTB 1, TUA 3, ATPase P, PRT 6, RP II). The stability of these genes was evaluated under different stress conditions, cold and heat with the hybrid 'Mariana 2624' and N nutrition with the hybrids 'Colt' (P. avium × P. pseudocerasus Lindl.) and 'Garnem' [P. dulcis Mill.× (P. persica L.× P. davidiana Carr.)]. The algorithms of geNorm and BestKeeper software also were used to analyze the performance of these genes as housekeepers. Stability rankings varied according to treatments, genotypes and the software for evaluation, but the gene GBT 1 often had the highest ranking. However, most of the genes are suitable depending on the stressor and/or genotype to be evaluated. No optimal number of reference genes could be determined with geNorm software when all conditions and genotypes were considered. These results strongly suggest that relative RT-qPCR should be analyzed separately with their respective best housekeeper according to the treatment and/or genotypes in Prunus spp. rootstocks.
Journal Article
Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing)
by
Perez, Jorge
,
Villar, Luis
,
Masciarelli, Oscar
in
Abscisic acid
,
Arabidopsis
,
Arabidopsis thaliana
2020
In sweet cherry trees, flowering is commercially important because the flowers, after fertilization, will generate the fruits. In P. avium, the flowering induction and flower organogensis are the first developmental steps towards flower formation and they occur within specialized organs known as floral buds during the summer, nine months before blooming. During this period the number of floral buds per tree and the bud fruitfulness (number of flowers per bud) are stablished affecting the potential yield of orchards and the plant architecture. The floral bud development is sensitive to any type of stress and the hotter and drier summers will interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular and hormonal mechanisms would be of help, but unlike the model plant Arabidopsis, very little is known about floral induction in sweet cherry. To explore the molecular mechanism of floral bud differentiation, high-throughput RNA sequencing was used to detect differences in the gene expression of P. avium floral buds at five differentiation stages. We found 2,982 differentially expressed genes during floral bud development. We identified genes associated with floral initiation or floral organ identity that appear to be useful biomarkers of floral development and several transcription factor families (ERF, MYB, bHLH, MADS-box and NAC gene family) with novel potential roles during floral transition in this species. We analyzed in deep the MADS-box gene family and we shed light about their key role during floral bud and organs development in P. avium. Furthermore, the hormonal-related signatures in the gene regulatory networks and the dynamic changes of absicic acid, zeatin and indolacetic acid contents in buds suggest an important role for these hormones during floral bud differentiation in sweet cherry. These data provide a rich source of novel informacion for functional and evolutionary studies about floral bud development in sweet cherry and new tools for biotechnology and breeding.
Journal Article
Editorial: Using rootstocks in crops and fruit trees to mitigate the effects of climate change and abiotic stress
by
Moreno, María Ángeles
,
Martínez, Juan-Pablo
,
Sagredo, Boris
in
Abiotic stress
,
Adaptation
,
Agricultural production
2024
[...]plants with improved stress resistance or tolerance are desirable to support agricultural productivity and environmental sustainability. [...]the aim of the present Research Topic is to show the physiological and molecular aspects of tolerance to different types of abiotic stresses (drought, salinity, root asphyxia, iron chlorosis, and high or low temperatures) associated with the use of rootstocks in crops and fruit trees as a strategy to counteract these stresses. From the initial mapping population, 131 individuals were selected for their phenotypical characterization with soil plant analysis development (SPAD) measurements of plants grown in the field, exhibiting great variability. Other issues related to the use of rootstocks, such as their adaptation in interaction with rhizosphere microorganisms, are lines of research that will allow a better understanding of the adaptation mechanisms used by plants in the environments in which they have been developed and thus use them for the benefit of agriculture and food security in the context of climate change.
Journal Article
ABA influences color initiation timing in P. avium L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes
2021
In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in the control of fruit ripening and color development. Although the ABA treatment of sweet cherry fruits has been reported to upregulate anthocyanin pathway-related genes or ABA pathway-related genes, the temporality of molecular and physiological events occurring during color development and the ABA control of these events during the color initiation are lacking in this species. In this work, we analyzed variations in the Index of Absorbance Difference (IAD), a maturity index, and total anthocyanins along with changes in transcript abundance of ABA and anthocyanin pathway-related genes, from light green to red fruit stages. PavNCED1 and ABA signaling pathway-related genes upregulated when fruits transitioned from light green to pink stage, whereas anthocyanin pathway-related transcripts increased from pink to the red stage, together with increases in the anthocyanin content and IAD, suggesting sequentiality in molecular and physiological events during color development. Additionally, ABA applied at color initiation in planta advanced IAD, increased anthocyanin content, and yielded darker fruits at harvest. These changes were accompanied by changes in the transcript accumulation of ABA and anthocyanin pathway-related genes. This in planta treatment of sweet cherry fruits with ABA confirms that ABA is a central player in the control of color initiation in sweet cherries, associated with the transcript accumulation of genes involved in ABA homeostasis and signaling, which is followed by the up-regulation of anthocyanin pathway-related genes and color development.
Journal Article
Identification and Characterization of Microsatellite Loci in Maqui (Aristotelia chilensis Molina Stunz) Using Next-Generation Sequencing (NGS)
by
Correa, Francisco
,
Muñoz, Carlos
,
Rojas, Pamela
in
Antioxidants
,
Biology and Life Sciences
,
Cajanus cajan
2016
Maqui (Aristotelia chilensis [Molina] Stunz) is a small dioecious tree native to South America with edible fruit characterized by very high antioxidant capacity and anthocyanin content. To preserve maqui as a genetic resource it is essential to study its genetic diversity. However, the complete genome is unknown and only a few gene sequences are available in databases. Simple sequence repeats (SSR) markers, which are neutral, co-dominant, reproducible and highly variable, are desirable to support genetic studies in maqui populations. By means of identification and characterization of microsatellite loci from a maqui genotype, using 454 sequencing technology, we develop a set of SSR for this species. Obtaining a total of 165,043 shotgun genome sequences, with an average read length of 387 bases, we covered 64 Mb of the maqui genome. Reads were assembled into 4,832 contigs, while 98,546 reads remained as singletons, generating a total of 103,378 consensus genomic sequences. A total of 24,494 SSR maqui markers were identified. Of them, 15,950 SSR maqui markers were classified as perfects. The most common SSR motifs were dinucleotide (31%), followed by tetranucleotide (26%) and trinucleotide motifs (24%). The motif AG/CT (28.4%) was the most abundant, while the motif AC (89 bp) was the largest. Eleven polymorphic SSRs were selected and used to analyze a population of 40 maqui genotypes. Polymorphism information content (PIC) ranged from 0.117 to 0.82, with an average of 0.58. Non-significant groups were observed in the maqui population, showing a panmictic genetic structure. In addition, we also predicted 11150 putative genes and 3 microRNAs (miRNAs) in maqui sequences. This results, including partial sequences of genes, some miRNAs and SSR markers from high throughput next generation sequencing (NGS) of maqui genomic DNA, constitute the first platform to undertake genetic and molecular studies of this important species.
Journal Article
Gibberellic Acid Modifies the Transcript Abundance of ABA Pathway Orthologs and Modulates Sweet Cherry (Prunus avium) Fruit Ripening in Early- and Mid-Season Varieties
2020
Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic acid (ABA). Gibberellins (GAs) are present during the onset of ripening in sweet cherry fruits, and exogenous gibberellic acid (GA3) application delays ripening, though this effect is variety-dependent. Although an ABA accumulation delay has been reported following GA3 treatment, the mechanism by which GA modulates this process has not been investigated at the molecular level in sweet cherry. Therefore, the aim of this work is to analyze the effect of GA3 on the fruit ripening process and the transcript levels of ABA pathway orthologs in two varieties having different maturity time phenotypes. The early-season variety had a rapid transition from yellow to pink fruit color, whereas pink color initiation took longer in the mid-season variety. GA3 increased the proportion of lighter colored fruits at ripeness in both varieties, but it produced a delay in IAD—a ripening index—only in the mid-season variety. This delay was accompanied by an increased transcript abundance of PavPP2Cs, which are putative negative regulators of the ABA pathway. On the other hand, the early-season variety had increased expression of PavCYP707A2—a putative ABA catabolic gene–, and reduced transcript levels of PavPP2Cs and SnRK2s after the GA3 treatment. Together these results show that GA modulates fruit ripening, exerting its action in part by interacting with the ABA pathway in sweet cherry.
Journal Article
Canopy Spraying of Abscisic Acid to Improve Fruit Quality of Different Sweet Cherry Cultivars
2021
Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climacteric fruit. Exogenous application of ABA has been performed to study fruit ripening and cracking, but this growth regulator is not used for commercial production. To determine the potential of this growth regulator to improve sweet cherry fruit quality, ABA canopy spraying was assayed in four cultivars. Canopy spraying of S-ABA significantly: (1) enhanced sweet cherry fruit color in ‘Glenred’, ‘Lapins’ and ‘Bing’ cultivars, but not in ‘Royal Rainier’ (a bi-colored cultivar), and (2) decreased fruit size and firmness in ‘Lapins’, ‘Bing’ and ‘Royal Rainier’. Seasonally reproducible effects were seen in ‘Lapins’ (mid/late-maturing) but not in ‘Glenred’ (early-maturing). Canopy spraying of nordihydroguaiaretic acid (NDGA) decreased color and increased fruit size in ‘Lapins’, but not in ‘Glenred’. Direct application of ABA on fruits attached to the tree, without application to the foliage, increased ‘Lapins’ fruit color without reducing size. These results suggest a localized fruit response to exogenous ABA application on fruit color development, but that a decrease in fruit size may be due to the effects of exogenous ABA on the tree canopy foliage.
Journal Article