Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "Sahai, Erik"
Sort by:
Physical influences of the extracellular environment on cell migration
Key Points Cells alter their migratory phenotypes and velocity in response to the physical properties of their extracellular environment. Confinement, adhesion, stiffness and topology of the extracellular environment are key physical variables influencing cell migration. Univariate profiles and phase diagrams enable an understanding of how physical variables influence cell migration. Numerical simulations enable systematic exploration of the phase space to highlight regions for experimental exploration. The physical properties of the extracellular environment — in terms of confinement, rigidity, surface topology and adhesion-ligand density — can have profound effects on the migration strategy and migration velocity of cells in different in vivo contexts. The way in which a cell migrates is influenced by the physical properties of its surroundings, in particular the properties of the extracellular matrix. How the physical aspects of the cell's environment affect cell migration poses a considerable challenge when trying to understand migration in complex tissue environments and hinders the extrapolation of in vitro analyses to in vivo situations. A comprehensive understanding of these problems requires an integrated biochemical and biophysical approach. In this Review, we outline the findings that have emerged from approaches that span these disciplines, with a focus on actin-based cell migration in environments with different stiffness, dimensionality and geometry.
Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis
By preventing G-actin accumulation, Rho-GTPase promotes the transcriptional activity of myocardin-related transcription factors (MRTFs), known co-factors of serum response factor (SRF). Rho-dependent MRTF expression is required for injected metastatic cell lines to colonize the lung. Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF–SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF–SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis. MRTF-depleted tumour cell xenografts showed reduced cell motility but proliferated normally. Tumour cells depleted of MRTF or SRF failed to colonize the lung from the bloodstream, being unable to persist after their arrival in the lung. Only a few genes show MRTF-dependent expression in both cell lines. Two of these, MYH9 (NMHCIIa) and MYL9 (MLC2), are also required for invasion and lung colonization. Conversely, expression of activated MAL/MRTF-A increases lung colonization by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus require Rho-dependent nuclear signalling through the MRTF–SRF network.
actin cytoskeleton in cancer cell motility
Cancer cell metastasis is a multi-stage process involving invasion into surrounding tissue, intravasation, transit in the blood or lymph, extravasation, and growth at a new site. Many of these steps require cell motility, which is driven by cycles of actin polymerization, cell adhesion and acto-myosin contraction. These processes have been studied in cancer cells in vitro for many years, often with seemingly contradictory results. The challenge now is to understand how the multitude of in vitro observations relates to the movement of cancer cells in living tumour tissue. In this review we will concentrate on actin protrusion and acto-myosin contraction. We will begin by presenting some general principles summarizing the widely-accepted mechanisms for the co-ordinated regulation of actin polymerization and contraction. We will then discuss more recent studies that investigate how experimental manipulation of actin dynamics affects cancer cell invasion in complex environments and in vivo.
A framework for advancing our understanding of cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.This Consensus Statement highlights the importance of cancer-associated fibroblasts in cancer biology and progression, and issues a call to action for all cancer researchers to standardize assays and report metadata in studies of cancer-associated fibroblasts to advance our understanding of this important cell type in the tumour microenvironment.
A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion
Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion. Cancer-associated fibroblasts (CAFs) promote metastasis by creating tracks for cancer cell migration. Labernadie  et al.  now show that heterotypic adhesions between E-cadherin on cancer cells and N-cadherin on CAFs transmit forces to drive invasion.
In vitro Models of Breast Cancer Metastatic Dormancy
Delayed relapses at distant sites are a common clinical observation for certain types of cancers after removal of primary tumor, such as breast and prostate cancer. This evidence has been explained by postulating a long period during which disseminated cancer cells (DCCs) survive in a foreign environment without developing into overt metastasis. Because of the asymptomatic nature of this phenomenon, isolation, and analysis of disseminated dormant cancer cells from clinically disease-free patients is ethically and technically highly problematic and currently these data are largely limited to the bone marrow. That said, detecting, profiling and treating indolent metastatic lesions before the onset of relapse is the imperative. To overcome this major limitation many laboratories developed models of the metastatic niche for different organs and different types of cancers. In this review we focus specifically on models designed to study metastatic dormancy of breast cancer cells (BCCs). We provide an overview of the BCCs employed in the different organotypic systems and address the components of the metastatic microenvironment that have been shown to impact on the dormant phenotype: tissue architecture, stromal cells, biochemical environment, oxygen levels, cell density. A brief description of the organ-specific models for bone, liver, and lung is provided. Finally, we discuss the strategies employed so far for the validation of the different systems.
Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions
The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour ‘cell collision guidance’. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell–cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy. The generation of aligned extracellular matrices by fibroblasts is shown to depend on cell reorientation following collision, leading to closer alignment of the cells’ long axes. This cell collision guidance depends on the transcription factor TFAP2C and localized regulation of actomyosin contractility.
STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy
Cancer-associated fibroblasts (CAFs) perform diverse roles and can modulate therapy responses1. The inflammatory environment within tumours also influences responses to many therapies, including the efficacy of oncolytic viruses2; however, the role of CAFs in this context remains unclear. Furthermore, little is known about the cell signalling triggered by heterotypic cancer cell–fibroblast contacts and about what activates fibroblasts to express inflammatory mediators1,3. Here, we show that direct contact between cancer cells and CAFs triggers the expression of a wide range of inflammatory modulators by fibroblasts. This is initiated following transcytosis of cytoplasm from cancer cells into fibroblasts, leading to the activation of STING and IRF3-mediated expression of interferon-β1 and other cytokines. Interferon-β1 then drives interferon-stimulated transcriptional programs in both cancer cells and stromal fibroblasts and ultimately undermines the efficacy of oncolytic viruses, both in vitro and in vivo. Further, targeting IRF3 solely in stromal fibroblasts restores oncolytic herpes simplex virus function.Tumour fibroblasts influence oncolytic viral therapy. Arwert et al. show that transcytosis of cancer cells into fibroblasts activates STING and IRF3 to upregulate interferon-β1, eliciting a transcriptional program to reduce the effectiveness of oncolytic viral therapy.
Mechanisms and impact of altered tumour mechanics
The physical characteristics of tumours are intricately linked to the tumour phenotype and difficulties during treatment. Many factors contribute to the increased stiffness of tumours; from increased matrix deposition, matrix remodelling by forces from cancer cells and stromal fibroblasts, matrix crosslinking, increased cellularity, and the build-up of both solid and interstitial pressure. Increased stiffness then feeds back to increase tumour invasiveness and reduce therapy efficacy. Increased understanding of this interplay is offering new therapeutic avenues. Tumours are often more stiff than normal tissue. In this Review, Mohammadi and Sahai discuss recent insights into how such altered tumour mechanics arise and how this affects tumorigenesis.
Deficits in axonal transport precede ALS symptoms in vivo
ALS is a fatal neurodegenerative disease characterized by selective motor neuron death resulting in muscle paralysis. Mutations in superoxide dismutase 1 (SOD1) are responsible for a subset of familial cases of ALS. Although evidence from transgenic mice expressing human mutant SOD1 G93A suggests that axonal transport defects may contribute to ALS pathogenesis, our understanding of how these relate to disease progression remains unclear. Using an in vivo assay that allows the characterization of axonal transport in single axons in the intact sciatic nerve, we have identified clear axonal transport deficits in presymptomatic mutant mice. An impairment of axonal retrograde transport may therefore represent one of the earliest axonal pathologies in SOD1 G93A mice, which worsens at an early symptomatic stage. A deficit in axonal transport may therefore be a key pathogenic event in ALS and an early disease indicator of motor neuron degeneration.