Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Saint-Albin-Deliot, Audrey"
Sort by:
Dopamine Modulates the Processing of Food Odour in the Ventral Striatum
Food odour is a potent stimulus of food intake. Odour coding in the brain occurs in synergy or competition with other sensory information and internal signals. For eliciting feeding behaviour, food odour coding has to gain signification through enrichment with additional labelling in the brain. Since the ventral striatum, at the crossroads of olfactory and reward pathways, receives a rich dopaminergic innervation, we hypothesized that dopamine plays a role in food odour information processing in the ventral striatum. Using single neurones recordings in anesthetised rats, we show that some ventral striatum neurones respond to food odour. This neuronal network displays a variety of responses (excitation, inhibition, rhythmic activity in phase with respiration). The localization of recorded neurones in a 3-dimensional brain model suggests the spatial segregation of this food-odour responsive population. Using local field potentials recordings, we found that the neural population response to food odour was characterized by an increase of power in the beta-band frequency. This response was modulated by dopamine, as evidenced by its depression following administration of the dopaminergic D1 and D2 antagonists SCH23390 and raclopride. Our results suggest that dopamine improves food odour processing in the ventral striatum.
Biosynthetic proteins targeting the SARS-CoV-2 spike as anti-virals
The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC 50 of 8–18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC 50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.
Brain Processing of Biologically Relevant Odors in the Awake Rat, as Revealed by Manganese-Enhanced MRI
So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.
Endothelin increases the proliferation of rat olfactory mucosa cells
The olfactory mucosa holds olfactory sensory neurons directly in contact with an aggressive environment. In order to maintain its integrity, it is one of the few neural zones which are continuously renewed during the whole animal life. Among several factors regulating this renewal, endothelin acts as an anti-apoptotic factor in the rat olfactory epithelium. In the present study, we explored whether endothelin could also act as a proliferative factor. Using primary culture of the olfactory mucosa, we found that an early treatment with endothelin increased its growth. Consistently, a treatment with a mixture of BQ123 and BQ788 (endothelin receptor antagonists) decreased the primary culture growth without affecting the cellular death level. We then used combined approaches of calcium imaging, reverse transcriptase-quantitative polymerase chain reaction and protein level measurements to show that endothelin was locally synthetized by the primary culture until it reached confluency. Furthermore, in vivo intranasal instillation of endothelin receptor antagonists led to a decrease of olfactory mucosa cell expressing proliferating cell nuclear antigen (PCNA), a marker of proliferation. Only short-term treatment reduced the PCNA level in the olfactory mucosa cells. When the treatment was prolonged, the PCNA level was not statistically affected but the expression level of endothelin was increased. Overall, our results show that endothelin plays a proliferative role in the olfactory mucosa and that its level is dynamically regulated. This study was approved by the Comité d'éthique en expérimentation animale COMETHEA (COMETHEA C2EA -45; protocol approval #12-058) on November 28, 2012.
Biosynthetic proteins targeting the SARS-CoV-2 spike as anti-virals
The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named alphaReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent alphaRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, alphaReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment. Competing Interest Statement The authors have declared no competing interest.
Neutrophils initiate the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters
The loss of smell related to SARS-CoV-2 infection is one of the most prevalent symptoms of COVID-19. It is now clear that this symptom is related to the massive infection by SARS-CoV-2 of the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamster, we show here that while apoptosis remains at a low level in damaged infected epithelium, the latter is invaded by innate immunity cells. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we reduced the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease of SARS-CoV-2 infection levels in the nasal cavity. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus. Competing Interest Statement The authors have declared no competing interest.
Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters
Anosmia is one of the most prevalent symptoms of SARS-CoV-2 infection during the COVID-19 pandemic. However, the cellular mechanism behind the sudden loss of smell has not yet been investigated. The initial step of odour detection takes place in the pseudostratified olfactory epithelium (OE) mainly composed of olfactory sensory neurons surrounded by supporting cells known as sustentacular cells. The olfactory neurons project their axons to the olfactory bulb in the central nervous system offering a potential pathway for pathogens to enter the central nervous system by bypassing the blood brain barrier. In the present study, we explored the impact of SARS-COV-2 infection on the olfactory system in golden Syrian hamsters. We observed massive damage of the OE as early as 2 days post nasal instillation of SARS-CoV-2, resulting in a major loss of cilia necessary for odour detection. These damages were associated with infection of a large proportion of sustentacular cells but not of olfactory neurons, and we did not detect any presence of the virus in the olfactory bulbs. We observed massive infiltration of immune cells in the OE and lamina propria of infected animals, which may contribute to the desquamation of the OE. The OE was partially restored 14 days post infection. Anosmia observed in COVID-19 patient is therefore likely to be linked to a massive and fast desquamation of the OE following sustentacular cells infection with SARS-CoV-2 and subsequent recruitment of immune cells in the OE and lamina propria. Competing Interest Statement The authors have declared no competing interest.