Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Sakata, Shihori"
Sort by:
High accuracy measurement of the quantum efficiency using radiation pressure
Preliminary investigations of a novel method to measure the laser power accurately using the radiation pressure are reported here. We aim to measure the laser power within one percent error to then obtain an accurate quantum efficiency (QE) of a photodiode. Since the typical error of QE is still a few percent due to the uncertainty of measured laser power, an accurate measurement of the laser power contributes a precise estimation of the QE. Our experimental setup is a suspended Michelson interferometer, where one of the pendulums is small, consisting of a 20-mg mirror and 10-um fiber. The motion of this small mirror is very sensitive to changes in radiation pressure. Due to this, the number of photons in the incident (intensity modulated) laser beam can be counted accurately by measuring displacement of the mirror. We set up the apparatus, and have found a suitable frequency band for the accurate measurement. Displacement caused by the radiation pressure was observed using the feedback signal.
The status of DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present..
Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer
We developed a control scheme of homodyne detection. To operate the homodyne detector as easy as possible, a simple Michelson interferometer is used. Here a motivation that the control scheme of the homodyne detection is developed is for our future experiment of extracting the ponderomotively squeezed vacuum fluctuations. To obtain the best signalto- noise ratio using the homodyne detection, the homodyne phase should be optimized. The optimization of the homodyne phase is performed by changing a phase of a local oscillator for the homodyne detection from a point at which a signal is maximized. In fact, in this experiment, using the developed control scheme, we locked the Michelson interferometer with the homodyne detector and changed the phase of the local oscillator for the homodyne detection. Then, we measured signals quantity changed by changing the phase of the local oscillator for the homodyne detection. Here we used the output from the homodyne detection as the signal.
The Japanese space gravitational wave antenna - DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies.
DECIGO: The Japanese space gravitational wave antenna
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a differential Fabry-Perot interferometer. We plan to launch DECIGO in middle of 2020s, after sequence of two precursor satellite missions, DECIGO pathfinder and Pre-DECIGO, for technology demonstration required to realize DECIGO and hopefully for detection of gravitational waves from our galaxy or nearby galaxies.
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article.
Lock Acquisition Scheme For The Advanced LIGO Optical configuration
The lock acquisition scheme for the Advanced LIGO optical configuration, which makes use of resonant sideband extraction , is under investigation in the 40 meter prototype interferometer at Caltech. The 40m has a similar optical configuration to the one planned for Advanced LIGO which has 5 degrees of freedom for length control. So far we have succeeded in locking the 5 degrees of freedom routinely. The differential mode of arm cavities was locked in the same state as the final setup, and the peak of optical resonance was verified to be around 4 kHz. Currently, since an offset remains in the common mode of the arm cavities, another optical resonance can be seen in common mode optical gain.
Precise Measurement of Laser Power using an Optomechanical System
This paper shows a novel method to precisely measure the laser power using an optomechanical system. By measuring a mirror displacement caused by the reflection of an amplitude modulated laser beam, the number of photons in the incident continuous-wave laser can be precisely measured. We have demonstrated this principle by means of a prototype experiment uses a suspended 25 mg mirror as an mechanical oscillator coupled with the radiation pressure and a Michelson interferometer as the displacement sensor. A measurement of the laser power with an uncertainty of less than one percent (1 sigma) is achievable.
Measurement of Optical Response of a Detuned Resonant Sideband Extraction Interferometer
We report on the optical response of a suspended-mass detuned resonant sideband extraction (RSE) interferometer with power recycling. The purpose of the detuned RSE configuration is to manipulate and optimize the optical response of the interferometer to differential displacements (induced by gravitational waves) as a function of frequency, independently of other parameters of the interferometer. The design of our interferometer results in an optical gain with two peaks: an RSE optical resonance at around 4 kHz and a radiation pressure induced optical spring at around 41 Hz. We have developed a reliable procedure for acquiring lock and establishing the desired optical configuration. In this configuration, we have measured the optical response to differential displacement and found good agreement with predictions at both resonances and all other relevant frequencies. These results build confidence in both the theory and practical implementation of the more complex optical configuration being planned for Advanced LIGO.