Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Salah, Eidarus"
Sort by:
2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases
2-Oxoglutarate (2OG) oxygenases are validated agrochemical and human drug targets. The potential for modulating their activity with 2OG derivatives has not been explored, possibly due to concerns regarding selectivity. We report proof-of-principle studies demonstrating selective enhancement or inhibition of 2OG oxygenase activity by 2-oxo acids. The human 2OG oxygenases studied, factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH) and aspartate/asparagine-β-hydroxylase (AspH), catalyze C3 hydroxylations of Asp/Asn-residues. Of 35 tested 2OG derivatives, 10 enhance and 17 inhibit FIH activity. Comparison with results for AspH reveals that 2OG derivatives selectively enhance or inhibit FIH or AspH. Comparison of FIH structures complexed with 2OG derivatives to those for AspH provides insight into the basis of the observed selectivity. 2-Oxo acid derivatives have potential as drugs, for use in biomimetic catalysis, and in functional studies. The results suggest that the in vivo activity of 2OG oxygenases may be regulated by natural 2-oxo acids other than 2OG. The human 2-oxoglutarate (2OG) oxygenases FIH and AspH are relevant drug targets. Here, the authors show that synthetic and naturally occurring 2OG derivatives can selectively modulate FIH and AspH activities, suggesting that these compounds may serve as a basis to develop 2OG oxygenase-targeting probes and drugs.
Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy
Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used ( R )-enantiomer of the drug was inactive, whereas the ( S )-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by ( S )-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose ( S )-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents. A chemoproteomic screen is used here to identify MTH1 as the target of SCH51344, an experimental RAS-dependent cancer drug; a further search for inhibitors revealed ( S )-crizotinib as a potent MTH1 antagonist, which suppresses tumour growth in animal models of colon cancer, and could be part of a new class of anticancer drugs. MTH1 is Ras-linked target for cancer therapy Mutations in the Ras oncogene are associated with poor prognosis. It was known that overexpression of MTH1, a protein involved in preventing the incorporation of damaged bases into DNA, prevents Ras-induced senescence. In seeking to understand how damaged deoxynucleotides (dNTPs) promote cancer, Thomas Helleday and colleagues found that MTH1 activity is essential for the survival of transformed cells, and isolated two small-molecule MTH1 inhibitors, TH287 and TH588. In the presence of these hydrolase inhibitors, damaged nucleotides are incorporated into DNA only in cancer cells, causing cytotoxicity and eliciting a beneficial response in mouse xenograft cancer models. In a second study, Giulio Superti-Furga and colleagues sought to identify the target of a small molecule, SCH51344, that had been developed for use against Ras -dependent cancers and found that it inactivates MTH1. This allowed them to identify a new potent inhibitor of MTH1 that is enantiomer-selective, ( S )-crizotinib. In the presence of this drug, tumour growth is suppressed in animal models of colon cancer.
Comprehensive characterization of the Published Kinase Inhibitor Set
A well-characterized library of experimental kinase inhibitors provides leads for targeting the untargeted kinome. Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein–coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis in vitro . These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.
Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level
Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction. The irradiation and chemotherapy drugs that are used to destroy cancer cells also damage healthy cells. Germ cells – from which egg cells and sperm cells develop – are particularly vulnerable as they contain sensitive quality control mechanisms that kill any cell that contain damaged DNA. Consequently, after surviving cancer many patients are confronted with infertility. A protein called p63, which is closely related to another protein that suppresses the formation of tumors, plays an essential role in detecting and responding to DNA damage. In immature egg cells (also known as oocytes), p63 mostly exists in an inactive form. The protein then switches to an active form when DNA damage is detected to trigger the process of cell self-destruction. Now, Coutandin, Osterburg et al. have performed a range of biochemical, biophysical and cell culture experiments to study how p63 is kept in its inactive form in the oocytes of mice. The experiments showed that in the inactive form, the two ends of the protein form a sheet that closes a key site on the protein and prevents it from changing into its active form. However, this closed form can be thought of as being like a spring-loaded trap – it doesn’t take much energy to spring the trap and open the protein into its active form. Once this change has occurred, it is irreversible. Coutandin, Osterburg et al. also found that the oocytes of mice already contain all the proteins necessary to activate p63. This means that once the switch to the active form is triggered there is no delay waiting for other proteins to be made, which makes oocytes extremely sensitive to DNA damage. Further work is now needed to investigate the exact molecular mechanisms behind the activation of p63.
In vitro selection of macrocyclic peptide inhibitors containing cyclic γ2,4-amino acids targeting the SARS-CoV-2 main protease
γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1′ catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.In vitro screening of a ribosomally synthesized macrocyclic peptide library containing cyclic γ2,4-amino acids (cγAA) afforded the discovery of potent inhibitors of the SARS-CoV-2 main protease (Mpro). A co-crystal structure revealed the contribution of this cγAA to Mpro binding and the proteolytic stability of these macrocycles.
JmjC catalysed histone H2a N-methyl arginine demethylation and C4-arginine hydroxylation reveals importance of sequence-reactivity relationships
2-Oxoglutarate (2OG) dependent N ε -methyl lysine demethylases (JmjC-KDMs) regulate eukaryotic transcription. We report studies showing that isolated forms of all human KDM4 and KDM5 JmjC enzymes catalyse demethylation of N -methylated Arg-3 of histone H2a. Unexpectedly, the results reveal that KDM4E and, less efficiently, KDM4D catalyse C-4 hydroxylation of Arg-20 of H2a on peptides, recombinant H2a, and calf histone extracts, including when the Arg-20 guanidino group is N -methylated. Combined with previous observations, our biochemical results highlight the importance of sequence context in determining the relative efficiencies of lysine and arginine demethylation reactions catalysed by KDM4s and KDM5s. At least in some cases changes in sequence can also enable a different JmjC reaction mode, such as C-4 arginine hydroxylation instead of demethylation. Further work is thus required to define the full scope of JmjC catalysed reactions in cells. The JmjC histone demethylases KDM4 and KDM5 catalyse demethylation of N -methylated Arg-3 of histone H2a, and KDM4E is found − unexpectedly − to catalyse C-4 hydroxylation of Arg-20 of H2a.
Formaldehyde reacts with N-terminal proline residues to give bicyclic aminals
Formaldehyde (HCHO) is a potent electrophile that is toxic above threshold levels, but which is also produced in the nuclei of eukaryotic cells by demethylases. We report studies with the four canonical human histones revealing that histone H2B reacts with HCHO, including as generated by a histone demethylase, to give a stable product. NMR studies show that HCHO reacts with the N-terminal proline and associated amide of H2B to give a 5,5-bicyclic aminal that is relatively stable to competition with HCHO scavengers. While the roles of histone modification by this reaction require further investigation, we demonstrated the potential of N-terminal aminal formation to modulate protein function by conducting biochemical and cellular studies on the effects of HCHO on catalysis by 4-oxalocrotonate tautomerase, which employs a nucleophilic N-terminal proline. The results suggest that reactions of N-terminal residues with HCHO and other aldehydes have potential to alter protein function. Formaldehyde is a potent toxic electrophile at high concentrations; however its potential regulatory roles remain unknown. Here, the authors report that formaldehyde can react with terminal proline-containing proteins to generate stable 5,5-bicyclic aminal termini that modulate protein function.
Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins
N ε -Methylation of lysine residues in histones plays an essential role in the regulation of eukaryotic transcription. The ‘highest’ methylation mark, N ε -trimethyllysine, is specifically recognised by N ε -trimethyllysine binding ‘reader’ domains, and undergoes demethylation, as catalysed by 2-oxoglutarate dependent JmjC oxygenases. We report studies on the recognition of the closest positively charged N ε -trimethyllysine analogue, i.e. its trimethylphosphonium derivative (K P me 3 ), by N ε -trimethyllysine histone binding proteins and N ε -trimethyllysine demethylases. Calorimetric and computational studies with histone binding proteins reveal that H3K P 4me 3 binds more tightly than the natural H3K4me 3 substrate, though the relative differences in binding affinity vary. Studies with JmjC demethylases show that some, but not all, of them can accept the phosphonium analogue of their natural substrates and that the methylation state selectivity can be changed by substitution of nitrogen for phosphorus. The combined results reveal that very subtle changes, e.g . substitution of nitrogen for phosphorus, can substantially affect interactions between ligand and reader domains / demethylases, knowledge that we hope will inspire the development of highly selective small molecules modulating their activity. N ε -methylation of lysine residues in histones plays an essential role in the regulation of eukaryotic transcription, and understanding the extent to which histone N ε- methyllysine readers and erasers can manifest selectivity is of fundamental and medicinal interest. Here, the authors study the phosphonium analogue of N ε -trimethyllysine, finding that a subtle substitution from nitrogen to phosphorus substantially affects its interactions with N ε -methyllysine readers and erasers.
Structure of the CaMKIIδ/Calmodulin Complex Reveals the Molecular Mechanism of CaMKII Kinase Activation
Long-term potentiation (LTP), a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM)-dependent kinase II (CaMKII). CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIδ/[Ca.sup.2+]/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIδ/[Ca.sup.2+]/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix αD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules.
Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation
Long-term potentiation (LTP), a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM)-dependent kinase II (CaMKII). CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.