Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Saleh, Sameh N."
Sort by:
An “Infodemic”: Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak
BackgroundTwitter has been used to track trends and disseminate health information during viral epidemics. On January 21, 2020, the Centers for Disease Control and Prevention activated its Emergency Operations Center and the World Health Organization released its first situation report about coronavirus disease 2019 (COVID-19), sparking significant media attention. How Twitter content and sentiment evolved in the early stages of the COVID-19 pandemic has not been described.MethodsWe extracted tweets matching hashtags related to COVID-19 from January 14 to 28, 2020 using Twitter’s application programming interface. We measured themes and frequency of keywords related to infection prevention practices. We performed a sentiment analysis to identify the sentiment polarity and predominant emotions in tweets and conducted topic modeling to identify and explore discussion topics over time. We compared sentiment, emotion, and topics among the most popular tweets, defined by the number of retweets.ResultsWe evaluated 126 049 tweets from 53 196 unique users. The hourly number of COVID-19-related tweets starkly increased from January 21, 2020 onward. Approximately half (49.5%) of all tweets expressed fear and approximately 30% expressed surprise. In the full cohort, the economic and political impact of COVID-19 was the most commonly discussed topic. When focusing on the most retweeted tweets, the incidence of fear decreased and topics focused on quarantine efforts, the outbreak and its transmission, as well as prevention.ConclusionsTwitter is a rich medium that can be leveraged to understand public sentiment in real-time and potentially target individualized public health messages based on user interest and emotion.Twitter can be used to identify the sentiment, emotion, and prominent topics discussed among the public during pandemics, allowing for large-scale, public health interventions with direct and targeted messaging.
Analyzing COVID-19 disinformation on Twitter using the hashtags #scamdemic and #plandemic: Retrospective study
The use of social media during the COVID-19 pandemic has led to an \"infodemic\" of mis- and disinformation with potentially grave consequences. To explore means of counteracting disinformation, we analyzed tweets containing the hashtags #Scamdemic and #Plandemic. Using a Twitter scraping tool called twint, we collected 419,269 English-language tweets that contained \"#Scamdemic\" or \"#Plandemic\" posted in 2020. Using the Twitter application-programming interface, we extracted the same tweets (by tweet ID) with additional user metadata. We explored descriptive statistics of tweets including their content and user profiles, analyzed sentiments and emotions, performed topic modeling, and determined tweet availability in both datasets. After removal of retweets, replies, non-English tweets, or duplicate tweets, 40,081 users tweeted 227,067 times using our selected hashtags. The mean weekly sentiment was overall negative for both hashtags. One in five users who used these hashtags were suspended by Twitter by January 2021. Suspended accounts had an average of 610 followers and an average of 6.7 tweets per user, while active users had an average of 472 followers and an average of 5.4 tweets per user. The most frequent tweet topic was \"Complaints against mandates introduced during the pandemic\" (79,670 tweets), which included complaints against masks, social distancing, and closures. While social media has democratized speech, it also permits users to disseminate potentially unverified or misleading information that endangers people's lives and public health interventions. Characterizing tweets and users that use hashtags associated with COVID-19 pandemic denial allowed us to understand the extent of misinformation. With the preponderance of inaccessible original tweets, we concluded that posters were in denial of the COVID-19 pandemic and sought to disperse related mis- or disinformation resulting in suspension. Leveraging 227,067 tweets with the hashtags #scamdemic and #plandemic in 2020, we were able to elucidate important trends in public disinformation about the COVID-19 vaccine.
Understanding public perception of coronavirus disease 2019 (COVID-19) social distancing on Twitter
Social distancing policies are key in curtailing severe acute respiratory coronavirus virus 2 (SARS-CoV-2) spread, but their effectiveness is heavily contingent on public understanding and collective adherence. We studied public perception of social distancing through organic, large-scale discussion on Twitter. Retrospective cross-sectional study. Between March 27 and April 10, 2020, we retrieved English-only tweets matching two trending social distancing hashtags, #socialdistancing and #stayathome. We analyzed the tweets using natural language processing and machine-learning models, and we conducted a sentiment analysis to identify emotions and polarity. We evaluated the subjectivity of tweets and estimated the frequency of discussion of social distancing rules. We then identified clusters of discussion using topic modeling and associated sentiments. We studied a sample of 574,903 tweets. For both hashtags, polarity was positive (mean, 0.148; SD, 0.290); only 15% of tweets had negative polarity. Tweets were more likely to be objective (median, 0.40; IQR, 0-0.6) with ~30% of tweets labeled as completely objective (labeled as 0 in range from 0 to 1). Approximately half of tweets (50.4%) primarily expressed joy and one-fifth expressed fear and surprise. Each correlated well with topic clusters identified by frequency including leisure and community support (ie, joy), concerns about food insecurity and quarantine effects (ie, fear), and unpredictability of coronavirus disease 2019 (COVID-19) and its implications (ie, surprise). Considering the positive sentiment, preponderance of objective tweets, and topics supporting coping mechanisms, we concluded that Twitter users generally supported social distancing in the early stages of their implementation.
Early identification of patients admitted to hospital for covid-19 at risk of clinical deterioration: model development and multisite external validation study
AbstractObjectiveTo create and validate a simple and transferable machine learning model from electronic health record data to accurately predict clinical deterioration in patients with covid-19 across institutions, through use of a novel paradigm for model development and code sharing.DesignRetrospective cohort study.SettingOne US hospital during 2015-21 was used for model training and internal validation. External validation was conducted on patients admitted to hospital with covid-19 at 12 other US medical centers during 2020-21.Participants33 119 adults (≥18 years) admitted to hospital with respiratory distress or covid-19.Main outcome measuresAn ensemble of linear models was trained on the development cohort to predict a composite outcome of clinical deterioration within the first five days of hospital admission, defined as in-hospital mortality or any of three treatments indicating severe illness: mechanical ventilation, heated high flow nasal cannula, or intravenous vasopressors. The model was based on nine clinical and personal characteristic variables selected from 2686 variables available in the electronic health record. Internal and external validation performance was measured using the area under the receiver operating characteristic curve (AUROC) and the expected calibration error—the difference between predicted risk and actual risk. Potential bed day savings were estimated by calculating how many bed days hospitals could save per patient if low risk patients identified by the model were discharged early.Results9291 covid-19 related hospital admissions at 13 medical centers were used for model validation, of which 1510 (16.3%) were related to the primary outcome. When the model was applied to the internal validation cohort, it achieved an AUROC of 0.80 (95% confidence interval 0.77 to 0.84) and an expected calibration error of 0.01 (95% confidence interval 0.00 to 0.02). Performance was consistent when validated in the 12 external medical centers (AUROC range 0.77-0.84), across subgroups of sex, age, race, and ethnicity (AUROC range 0.78-0.84), and across quarters (AUROC range 0.73-0.83). Using the model to triage low risk patients could potentially save up to 7.8 bed days per patient resulting from early discharge.ConclusionA model to predict clinical deterioration was developed rapidly in response to the covid-19 pandemic at a single hospital, was applied externally without the sharing of data, and performed well across multiple medical centers, patient subgroups, and time periods, showing its potential as a tool for use in optimizing healthcare resources.
Can we predict early 7-day readmissions using a standard 30-day hospital readmission risk prediction model?
Background Despite focus on preventing 30-day readmissions, early readmissions (within 7 days of discharge) may be more preventable than later readmissions (8–30 days). We assessed how well a previously validated 30-day EHR-based readmission prediction model predicts 7-day readmissions and compared differences in strength of predictors. Methods We conducted an observational study on adult hospitalizations from 6 diverse hospitals in North Texas using a 50–50 split-sample derivation and validation approach. We re-derived model coefficients for the same predictors as in the original 30-day model to optimize prediction of 7-day readmissions. We then compared the discrimination and calibration of the 7-day model to the 30-day model to assess model performance. To examine the changes in the point estimates between the two models, we evaluated the percent changes in coefficients. Results Of 32,922 index hospitalizations among unique patients, 4.4% had a 7-day admission and 12.7% had a 30-day readmission. Our original 30-day model had modestly lower discrimination for predicting 7-day vs. any 30-day readmission (C-statistic of 0.66 vs. 0.69, p  ≤ 0.001). Our re-derived 7-day model had similar discrimination (C-statistic of 0.66, p  = 0.38), but improved calibration. For the re-derived 7-day model, discharge day factors were more predictive of early readmissions, while baseline characteristics were less predictive. Conclusion A previously validated 30-day readmission model can also be used as a stopgap to predict 7-day readmissions as model performance did not substantially change. However, strength of predictors differed between the 7-day and 30-day model; characteristics at discharge were more predictive of 7-day readmissions, while baseline characteristics were less predictive. Improvements in predicting early 7-day readmissions will likely require new risk factors proximal to day of discharge.
Social media: A new tool for outbreak surveillance
Social media platforms allow users to share news, ideas, thoughts, and opinions on a global scale. Data processing methods allow researchers to automate the collection and interpretation of social media posts for efficient and valuable disease surveillance. Data derived from social media and internet search trends have been used successfully for monitoring and forecasting disease outbreaks such as Zika, Dengue, MERS, and Ebola viruses. More recently, data derived from social media have been used to monitor and model disease incidence during the coronavirus disease 2019 (COVID-19) pandemic. We discuss the use of social media for disease surveillance.
Reaching Populations at Risk for HIV Through Targeted Facebook Advertisements: Cost-Consequence Analysis
An undiagnosed HIV infection remains a public health challenge. In the digital era, social media and digital health communication have been widely used to accelerate research, improve consumer health, and facilitate public health interventions including HIV prevention. We aimed to evaluate and compare the projected cost and efficacy of different simulated Facebook (FB) advertisement (ad) approaches targeting at-risk populations for HIV based on new HIV diagnosis rates by age group and geographic region in the United States. We used the FB ad platform to simulate (without actually launching) an automatically placed video ad for a 10-day duration targeting at-risk populations for HIV. We compared the estimated total ad audience, daily reach, daily clicks, and cost. We tested ads for the age group of 13 to 24 years (in which undiagnosed HIV is most prevalent), other age groups, US geographic regions and states, and different campaign budgets. We then estimated the ad cost per new HIV diagnosis based on HIV positivity rates and the average health care industry conversion rate. On April 20, 2021, the potential reach of targeted ads to at-risk populations for HIV in the United States was approximately 16 million for all age groups and 3.3 million for age group 13 to 24 years, with the highest potential reach in California, Texas, Florida, and New York. When using different FB ad budgets, the daily reach and daily clicks per US dollar followed a cumulative distribution curve of an exponential function. Using multiple US $10 ten-day ads, the cost per every new HIV diagnosis ranged from US $13.09 to US $37.82, with an average cost of US $19.45. In contrast, a 1-time national ad had a cost of US $72.76 to US $452.25 per new HIV diagnosis (mean US $166.79). The estimated cost per new HIV diagnosis ranged from US $13.96 to US $55.10 for all age groups (highest potential reach and lowest cost in the age groups 20-29 and 30-39 years) and from US $12.55 to US $24.67 for all US regions (with the highest potential reach of 6.2 million and the lowest cost per new HIV diagnosis at US $12.55 in the US South). Targeted personalized FB ads are a potential means to encourage at-risk populations for HIV to be tested, especially those aged 20 to 39 years in the US South, where the disease burden and potential reach on FB are high and the ad cost per new HIV diagnosis is low. Considering the cost efficiency of ads, the combined cost of multiple low-cost ads may be more economical than a single high-cost ad, suggesting that local FB ads could be more cost-effective than a single large-budget national FB ad.
Is there an association between peri-diagnostic vaccination and clinical outcomes in COVID-19 patients?
Peri-diagnostic vaccination contemporaneous with SARS-CoV-2 infection might boost antiviral immunity and improve patient outcomes. We investigated, among previously unvaccinated patients, whether vaccination (with the Pfizer, Moderna, or J&J vaccines) during the week before or after a positive COVID-19 test was associated with altered 30-day patient outcomes. Using a deidentified longitudinal EHR repository, we selected all previously unvaccinated adults who initially tested positive for SARS-CoV-2 between December 11, 2020 (the date of vaccine emergency use approval) and December 19, 2021. We assessed whether vaccination between days -7 and +7 of a positive test affected outcomes. The primary measure was progression to a more severe disease outcome within 30 days of diagnosis using the following hierarchy: hospitalization, intensive care, or death. Among 60,031 hospitalized patients, 543 (0.91%) were initially vaccinated at the time of diagnosis and 59,488 (99.09%) remained unvaccinated during the period of interest. Among 316,337 nonhospitalized patients, 2,844 (0.90%) were initially vaccinated and 313,493 (99.1%) remained unvaccinated. In both analyses, individuals receiving vaccines were older, more often located in the northeast, more commonly insured by Medicare, and more burdened by comorbidities. Among previously unvaccinated patients, there was no association between receiving an initial vaccine dose between days -7 and +7 of diagnosis and progression to more severe disease within 30 days compared to patients who did not receive vaccines. Immunization during acute SARS-CoV-2 infection does not appear associated with clinical progression during the acute infectious period.
Early identification of patients at risk for iron-deficiency anemia using deep learning techniques
Abstract Objectives Iron-deficiency anemia (IDA) is a common health problem worldwide, and up to 10% of adult patients with incidental IDA may have gastrointestinal cancer. A diagnosis of IDA can be established through a combination of laboratory tests, but it is often underrecognized until a patient becomes symptomatic. Based on advances in machine learning, we hypothesized that we could reduce the time to diagnosis by developing an IDA prediction model. Our goal was to develop 3 neural networks by using retrospective longitudinal outpatient laboratory data to predict the risk of IDA 3 to 6 months before traditional diagnosis. Methods We analyzed retrospective outpatient electronic health record data between 2009 and 2020 from an academic medical center in northern Texas. We included laboratory features from 30,603 patients to develop 3 types of neural networks: artificial neural networks, long short-term memory cells, and gated recurrent units. The classifiers were trained using the Adam Optimizer across 200 random training-validation splits. We calculated accuracy, area under the receiving operating characteristic curve, sensitivity, and specificity in the testing split. Results Although all models demonstrated comparable performance, the gated recurrent unit model outperformed the other 2, achieving an accuracy of 0.83, an area under the receiving operating characteristic curve of 0.89, a sensitivity of 0.75, and a specificity of 0.85 across 200 epochs. Conclusions Our results showcase the feasibility of employing deep learning techniques for early prediction of IDA in the outpatient setting based on sequences of laboratory data, offering a substantial lead time for clinical intervention.
A Comparison of Online Medical Crowdfunding in Canada, the UK, and the US
Despite major differences in their health care systems, medical crowdfunding is increasingly used to finance personal health care costs in Canada, the UK, and the US. However, little is known about the campaigns designed to raise monetary donations for medical expenses, the individuals who turn to crowdfunding, and their fundraising intent. To examine the demographic characteristics of medical crowdfunding beneficiaries, campaign characteristics, and their association with funding success in Canada, the UK, and the US. This cross-sectional study extracted and manually reviewed data from GoFundMe campaigns discoverable between February 2018 and March 2019. All available campaigns on each country domain's GoFundMe medical discovery webpage that benefitted a unique patient(s) were included from Canada, the UK, and the US. Data analysis was performed from March to December 2019. Campaign and beneficiary characteristics. Log-transformed amount raised in US dollars. This study examined 3396 campaigns including 1091 in Canada, 1082 in the UK, and 1223 in the US. Campaigns in the US (median [IQR], $38 204 [$31 200 to $52 123]) raised more funds than campaigns in Canada ($12 662 [$9377 to $19 251]) and the UK ($6285 [$4028 to $12 348]). In the overall cohort per campaign, Black individuals raised 11.5% less (95% CI, -19.0% to -3.2%; P = .006) than non-Black individuals, and male individuals raised 5.9% more (95% CI, 2.2% to 9.7%; P = .002) than female individuals. Female (39.4% of campaigns vs 50.8% of US population; difference, 11.3%; 95% CI, 8.6% to 14.1%; P < .001) and Black (5.3% of campaigns vs 13.4% of US population; difference, 8.1%; 95% CI, 6.8% to 9.3%; P < .001) beneficiaries were underrepresented among US campaigns. Campaigns primarily for routine treatment expenses were approximately 3 times more common in the US (77.9% [272 of 349 campaigns]) than in Canada (21.9% [55 of 251 campaigns]; difference, 56.0%; 95% CI, 49.3-62.7%; P < .001) or the UK (26.6% [127 of 478 campaigns]; difference, 51.4%; 95% CI, 45.5%-57.3%; P < .001). However, campaigns for routine care were less successful overall. Approved, inaccessible care and experimental care raised 35.7% (95% CI, 25.6% to 46.7%; P < .001) and 20.9% (95% CI, 13.3% to 29.1%; P < .001), respectively, more per campaign than routine care. Campaigns primarily for alternative treatment expenses (16.1% [174 of 1079 campaigns]) were nearly 4-fold more common for cancer (23.5% [144 of 614 campaigns]) vs noncancer (6.5% [30 of 465 campaigns]) diagnoses. Important differences were observed in the reasons individuals turn to medical crowdfunding in the 3 countries examined that suggest racial and gender disparities in fundraising success. More work is needed to understand the underpinnings of these findings and their implications on health care provision in the countries examined.