Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Sales-Contini, Rita C. M."
Sort by:
A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing
Composite materials such as Fiber Metal Laminates (FMLs) have attracted the interest of the aerospace and automotive industries due to their high strength to weight ratio, but to use them as structures it is necessary to master the manufacturing and wiring techniques of these materials. Therefore, this paper aims to address and summarize the drilling and milling processes in FMLs based on a literature review of papers published from 2000 to 2023. Parameters used in multi-material manufacturing and machining such as drilling and milling, tool geometry, tool coating, lubricants and coolants published by researchers were analyzed, compared and discussed. Machining process parameters related to sustainability were also analyzed. A SWOT analysis was carried out and discussed to identify opportunities for improvement in the machining process. There are opportunities to develop the surface treatment of aluminum alloys, such as testing other combinations than those already used, testing non-traditional surface treatments and manufacturing modes, and developing sustainable techniques during the FML manufacturing process. In the area of tooling, the opportunities are mainly related to coatings for tools and changing machining parameters to achieve an optimum finished part. Finally, to improve the sustainability of the process, it is necessary to test coated drills under cryogenic conditions to reduce the use of lubricants during the machining process.
A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration
Strategies for obtaining deep slots in soft materials can vary significantly. Conventionally, the tool travels along the slot, removing material mainly with the side cutting edges. However, a “plunge milling” strategy is also possible, performing the cut vertically, taking advantage of the tip cutting edges that almost reach the center of the tool. Although both strategies are already commonly used, there is a clear gap in the literature in studies that compare tool wear, surface roughness, and productivity in each case. This paper describes an experimental study comparing the milling of deep slots in AA7050-T7451 aluminum alloy, coated with a novel DLCSiO500W3.5O2 layer to minimize the aluminum adhesion to the tool, using conventional and plunge milling strategies. The main novelty of this paper is to present a broad study regarding different factors involved in machining operations and comparing two distinct strategies using a novel tool coating in the milling of aeronautical aluminum alloy. Tool wear is correlated with the vibrations of the tools in each situation, the cycle time is compared between the cases studied, and the surface roughness of the machined surfaces is analyzed. This study concludes that the cycle time of plunge milling can be about 20% less than that of conventional milling procedures, favoring economic sustainability and modifying the wear observed on the tools. Plunge milling can increase productivity, does not increase tool tip wear, and avoids damaging the side edges of the tool, which can eventually be used for final finishing operations. Therefore, it can be said that the plunge milling strategy improves economic and environmental sustainability as it uses all the cutting edges of the tools in a more balanced way, with less global wear.
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
Due to Inconel 718’s high mechanical properties, even at higher temperatures, tendency to work-harden, and low thermal conductivity, this alloy is considered hard to machine. The machining of this alloy causes high amounts of tool wear, leading to its premature failure. There seems to be a gap in the literature, particularly regarding milling and finishing operations applied to Inconel 718 parts. In the present study, the wear behavior of multilayered PVD HiPIMS (High-power impulse magnetron sputtering)-coated TiN/TiAlN end-mills used for finishing operations on Inconel 718 is evaluated, aiming to establish/expand the understanding of the wear behavior of coated tools when machining these alloys. Different machining parameters, such as cutting speed, cutting length, and feed per tooth, are tested, evaluating the influence of these parameters’ variations on tool wear. The sustained wear was evaluated using SEM (Scanning electron microscope) analysis, characterizing the tools’ wear and identifying the predominant wear mechanisms. The machined surface was also evaluated after each machining test, establishing a relationship between the tools’ wear and production quality. It was noticed that the feed rate parameter exerted the most influence on the tools’ production quality, while the cutting speed mostly impacted the tools’ wear. The main wear mechanisms identified were abrasion, material adhesion, cratering, and adhesive wear. The findings of this study might prove useful for future research conducted on this topic, either optimization studies or studies on the simulation of the milling of Inconel alloys, such as the one presented here.
The Role of Chemical Treatments on Curaua Fibers on Mechanical and Thermal Behavior of Biodegradable Composites
Biodegradable composites combining thermoplastic polymers and natural fibers could originate materials with synergetic mechanical and thermal properties, keeping their biodegradability. This paper describes biodegradable polymers’ mechanical and thermal properties, such as polylactic acid (PLA) and polyhydroxybutyrate (PHB) reinforced with curaua fibers. To improve the interface between matrix and reinforcement, the curaua fibers were treated by two routes: (1) treatment with hot water and subsequent mercerization with NaOH; (2) treatment with chlorite and subsequent mercerization with NaOH. The composites of PLA and PHB reinforced with natural or modified fibers (10 and 20 wt%) were obtained by extrusion and injection molding. The influence of fiber content and treatment on composite properties was studied by tensile and flexural tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed the removal of hemicellulose and lignin from the fibers, increasing their crystallinity and slightly decreasing their thermal stability after chemical treatments. Also, the DSC technique showed that the insertion of the curaua fibers increased the crystallinity index of all composites/PLA. The mercerized-curaua (20 wt%)/PLA composite showed the best result in the mechanical behavior, both in tensile and bending tests. The PHB composite, reinforced with curaua fibers and treated with hot water and mercerization (20 wt%), showed the best result regarding mechanic performance. To conclude, all composites improved mechanical properties compared to pure polymers.
A Concise Review on Materials for Injection Moulds and Their Conventional and Non-Conventional Machining Processes
Injection moulds are crucial to produce plastic and lightweight metal components. One primary associated challenge is that these may suffer from different types of failures, such as wear and/or cracking, due to the extreme temperatures (T), thermal cycles, and pressures involved in the production process. According to the intended geometry and respective needs, mould manufacturing can be performed with conventional or non-conventional processes. This work focuses on three foremost alloys: AMPCO® (CuBe alloy), INVAR-36® (Fe-Ni alloys, Fe-Ni36), and heat-treated (HT) steels. An insight into the manufacturing processes’ limitations of these kinds of materials will be made, and solutions for more effective machining will be presented by reviewing other published works from the last decade. The main objective is to provide a concise and comprehensive review of the most recent investigations of these alloys’ manufacturing processes and present the machinability challenges from other authors, discovering the prospects for future work and contributing to the endeavours of the injection mould industry. This review highlighted the imperative for more extensive research and development in targeted domains.
INCONEL® Alloy Machining and Tool Wear Finite Element Analysis Assessment: An Extended Review
Machining INCONEL® presents significant challenges in predicting its behaviour, and a comprehensive experimental assessment of its machinability is costly and unsustainable. Design of Experiments (DOE) can be conducted non-destructively through Finite Element Analysis (FEA). However, it is crucial to ascertain whether numerical and constitutive models can accurately predict INCONEL® machining. Therefore, a comprehensive review of FEA machining strategies is presented to systematically summarise and analyse the advancements in INCONEL® milling, turning, and drilling simulations through FEA from 2013 to 2023. Additionally, non-conventional manufacturing simulations are addressed. This review highlights the most recent modelling digital solutions, prospects, and limitations that researchers have proposed when tackling INCONEL® FEA machining. The genesis of this paper is owed to articles and books from diverse sources. Conducting simulations of INCONEL® machining through FEA can significantly enhance experimental analyses with the proper choice of damage and failure criteria. This approach not only enables a more precise calibration of parameters but also improves temperature (T) prediction during the machining process, accurate Tool Wear (TW) quantity and typology forecasts, and accurate surface quality assessment by evaluating Surface Roughness (SR) and the surface stress state. Additionally, it aids in making informed choices regarding the potential use of tool coatings.
Pallet Loading Problem: A Case Study in the Automotive Industry Applying a Simplified Mathematical Model
Logistics and the supply chain are areas of great importance within organizations. Due to planning gaps, an increase in extra and unnecessary transport costs is usually observed in several companies due to their commercial commitments and need to comply with the delivery time and the batch quantity of products, leading to a negative economic impact. Thus, the objective of this work was to adjust an optimization model to maximize the shipments usually carried out by the companies. To validate the model, an automotive components manufacturer was selected, allowing us to apply the model to a real case study and evaluate the advantages and drawbacks of this tool. It was found that the company to validate the model exports most of its products, and most pallets sent are not fully optimized, generating excessive expense for the company in terms of urgent transport. To solve this problem, two mathematical optimization models were used for the company’s current reality, optimizing the placement of boxes per pallet and customer. With the use of the new tool, it was possible to determine that five pallets should be sent to the customer weekly, which correspond to their needs, and that have the appropriate configurations so that the pallet is sent completely.
A Novel Fully Automatic Concept to Produce First Subset of Bowden Cables, Improving Productivity, Flexibility, and Safety
With a view to maintaining the competitiveness required by the market, the automotive industry strongly encourages its suppliers to develop new production methods and technologies capable of reducing the costs of produced products, ensuring the necessary quality, and increasing flexibility, with a view to responding more easily to the customization of the products that the market increasingly demands. The main goal of this work was to increase the flexibility and productivity of equipment capable of producing the first subset that constitutes the product commonly known as the Bowden cable. To this end, the design science research methodology was used, which was understood as the most effective in describing scientific work related to the improvement of existing systems. Bowden cables are cables that activate various devices in the car, such as opening doors, moving window glasses, and adjusting some car seats, among others. The work consisted of integrating several operations usually carried out for the manufacture of the referred subset, reducing logistics operations and manual work, increasing operator safety, and increasing the production rate and flexibility of the equipment, by reducing the setup time. For this purpose, new mechanical concepts were developed, and automation was applied, which resulted in a completely new concept, able to fulfill all the objectives initially set. It should be noted here that the new equipment allowed a production rate of 1140 p/h, when the initial objective was 1100 p/h; it requires an investment of only around EUR 55,000 (easy return on investment), occupies only 11.6 m2, and has reinforced safety systems to avoid workers’ injuries, an aspect that is very important in this type of equipment, where operators deal with cutting systems and high temperatures. The dissemination of this concept could help other researchers to easily find solutions to certain problems that they face in the development of modern equipment. The main contributions of this paper are the novel concepts created to overcome some process difficulties, which can be used for a wide range of other processing situations with similar difficulties. The solutions proposed allow a decrease in the cycle time, present high flexibility, save workshop space, and are affordable in terms of global cost.
A Computational Framework for Enhancing Industrial Operations and Electric Network Management: A Case Study
Automotive industries require constant technological development and the capacity to adapt to market needs. Hence, component suppliers must be able to adapt to persistent trend changes and technical improvements, acting in response to customers’ expectations and developing their manufacturing methods to be as flexible as possible. Concepts such as layout flexibility, management of industrial facilities, and building information modeling (BIM) are becoming ever more addressed within the automotive industry in order to envision and select the necessary information exchanges. Given this question and based on the gap in the literature regarding this subject, this work proposes a solution, developing a novel tool that allows the monitoring and assignment of newer/relocated equipment to the switchboards within a given industrial plant. The solution intends to increase the flexibility of production lines through the assessment, analysis, improvement, and reorganization of the electrical load distribution to develop projects accurately implying layout changes. The tool is validated with an automotive manufacturer. With the implementation of this open-source tool, a detailed electrical flow management system is accomplished, and it has proven successful and essential in raising levels of organizational flexibility. This has guaranteed the company’s competitiveness with effective integrated administration methods and tools, such as a much easier study upon inserting new/relocated equipment without production line breaks.
Mechanical Strength and Surface Analysis of a Composite Made from Recycled Carbon Fibre Obtained via the Pyrolysis Process for Reuse in the Manufacture of New Composites
This work aims to obtain recycled carbon fibre and develop an application for this new material. The carbon fibres were obtained by recycling aerospace prepreg waste via the pyrolysis process. The recycled fibres were combined with an Araldite LH5052/Aradur LY5053 epoxy resin/hardener system using manual lay-up and vacuum bagging processes. For comparison, the same resin/hardener system was used to produce a composite using commercial carbon fibre. The recycled and commercial composites were subjected to flexural, tensile and Mode I testing. Fracture aspects were analysed via scanning electron microscopy (SEM). The pyrolysis process did not affect the fibre surface as no degradation was observed. The fracture aspect showed a mixture of failure in the recycled composite laminate and interlaminar/translaminar failure near the surface of the commercial composite caused by flexural stress. Flexural and tensile tests showed a loss of mechanical strength due to the recycling process, but the tensile values were twice as high. The sand ladder platform was the project chosen for the development of a product made with recycled carbon fibres. The product was manufactured using the same manufacturing process as the specimens and tested with a 1243 kg car. The method chosen to design, manufacture and test the prototype sand ladder platform made of recycled carbon fibre was appropriate and gave satisfactory results in terms of high mechanical strength to bending and ease of use.