Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Salunke, Dinakar M."
Sort by:
A structure and knowledge-based combinatorial approach to engineering universal scFv antibodies against influenza M2 protein
by
Rajala, Maitreyi S.
,
Goyal, Priya
,
Salunke, Dinakar M.
in
Antibodies, Monoclonal - genetics
,
Antibodies, Monoclonal - metabolism
,
Antibodies, Viral
2023
Background
The influenza virus enters the host via hemagglutinin protein binding to cell surface sialic acid. Receptor-mediated endocytosis is followed by viral nucleocapsid uncoating for replication aided by the transmembrane viral M2 proton ion channel. M2 ectodomain (M2e) is a potential universal candidate for monoclonal antibody therapy owing to its conserved nature across influenza virus subtypes and its importance in viral propagation.
Methods
The phage-displayed naive human antibody libraries were screened against the short stretch of the N-terminal 10-mer peptide (SLLTEVETPI) of the M2e. ELISA, BLI, and flow cytometry assays were used to examine scFv binding to M2e epitopes. The scFv crystal structures were determined to examine the nature of the interactions. The potencies of the scFvs against the influenza virus were demonstrated by real-time PCR and confocal microscopy imaging.
Results
The four unique scFv clones were obtained from the scFv phage-display antibody libraries and shown to exhibit binding with the 10-mer conserved part of the M2e and with full-length M2 protein expressed on the HEK293T cells. The crystal structure of scFv AU1 with M2e peptide showed the peptide as a dimer in the parallel beta-sheet conformation bound at the interface of two scFv CDRs. The scFv AU1 significantly restricted the release of H1N1 virus progeny from the infected A549 cells.
Conclusion
This structural and biochemical study showcased the binding of antibody scFv molecules with M2e peptide dimer, providing the structural insights for the function effect in terms of recognizing and restricting the release of new viral particles from an infected host cell.
Journal Article
Putative Bioactive Motif of Tritrpticin Revealed by an Antibody with Biological Receptor-Like Properties
2013
Antimicrobial peptides represent one of the most promising future strategies for combating infections and microbial drug resistance. Tritrpticin is a 13mer tryptophan-rich cationic antimicrobial peptide with a broad spectrum of activity whose application in antimicrobial therapy has been hampered by ambiguity about its biological target and consequently the molecular interactions necessary for its antimicrobial activity. The present study provides clues about the mechanism of action of tritripticin by using a unique monoclonal antibody (mAb) as a 'physiological' structural scaffold. A pool of mAbs were generated against tritrpticin and based on its high affinity and ability to bind tritrpticin analogs, mAb 6C6D7 was selected and characterized further. In a screening of phage displayed random peptides, this antibody was able to identify a novel antimicrobial peptide with low sequence homology to tritrpticin, suggesting that the mAb possessed the physico-chemical characteristics mimicking the natural receptor. Subsequently, thermodynamics and molecular modeling identified a core group of hydrophobic residues in tritrpticin arranged in a distorted's' shaped conformation as critical for antibody binding. Comparison of the mAb induced conformation with the micelle bound structure of tritrpticin reveals how a common motif may be able to interact with multiple classes of biomolecules thus extending the target range of this innate immune peptide. Based on the concurrence between thermodynamic and structural data our results reveal a template that can be used to design novel antimicrobial pharmacophores while simultaneously demonstrating at a more fundamental level the potential of mAbs to act as receptor surrogates.
Journal Article
Crystallographic Study of Novel Transthyretin Ligands Exhibiting Negative-Cooperativity between Two Thyroxine Binding Sites
by
Salunke, Dinakar M.
,
Tomar, Divya
,
Khan, Tarique
in
Amyloidosis
,
Binding proteins
,
Binding sites
2012
Transthyretin (TTR) is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4) and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis.
We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site) than the second T4 site (BD site). Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy.
Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation.
Journal Article
Crystal Structure of Bfr A from Mycobacterium tuberculosis: Incorporation of Selenomethionine Results in Cleavage and Demetallation of Haem
by
Khare, Garima
,
Tyagi, Anil K.
,
Salunke, Dinakar M.
in
Amino Acid Sequence
,
Antioxidants
,
Antitubercular agents
2009
Emergence of tuberculosis as a global health threat has necessitated an urgent search for new antitubercular drugs entailing determination of 3-dimensional structures of a large number of mycobacterial proteins for structure-based drug design. The essential requirement of ferritins/bacterioferritins (proteins involved in iron storage and homeostasis) for the survival of several prokaryotic pathogens makes these proteins very attractive targets for structure determination and inhibitor design. Bacterioferritins (Bfrs) differ from ferritins in that they have additional noncovalently bound haem groups. The physiological role of haem in Bfrs is not very clear but studies indicate that the haem group is involved in mediating release of iron from Bfr by facilitating reduction of the iron core. To further enhance our understanding, we have determined the crystal structure of the selenomethionyl analog of bacterioferritin A (SeMet-BfrA) from Mycobacterium tuberculosis (Mtb). Unexpectedly, electron density observed in the crystals of SeMet-BfrA analogous to haem location in bacterioferritins, shows a demetallated and degraded product of haem. This unanticipated observation is a consequence of the altered spatial electronic environment around the axial ligands of haem (in lieu of Met52 modification to SeMet52). Furthermore, the structure of Mtb SeMet-BfrA displays a possible lost protein interaction with haem propionates due to formation of a salt bridge between Arg53-Glu57, which appears to be unique to Mtb BfrA, resulting in slight modulation of haem binding pocket in this organism. The crystal structure of Mtb SeMet-BfrA provides novel leads to physiological function of haem in Bfrs. If validated as a drug target, it may also serve as a scaffold for designing specific inhibitors. In addition, this study provides evidence against the general belief that a selenium derivative of a protein represents its true physiological native structure.
Journal Article
Crystal structure of the vicilin from Solanum melongena reveals existence of different anionic ligands in structurally similar pockets
2016
Crystal structure of a vicilin, SM80.1, was determined towards exploring its possible physiological functions. The protein was purified from
Solanum melongena
by combination of ammonium sulphate fractionation and size exclusion chromatography. Structure was determined
ab initio
at resolution of 1.5 Å by X-ray crystallography showing the three-dimensional topology of the trimeric protein. Each monomer of SM80.1 consists of two similar domains with hydrophobic binding pocket and each accommodating different ligands, i.e. acetate and pyroglutamate. The relatively high stability of these independent anionic ligands in similar pockets indicated a strict requirement of stabilization by hydrogen bonds with the charged residues, suggesting a degree of plasticity within the binding pocket. Comparison of SM80.1 structure with those of other 7S vicilins indicated conservation of putative binding pocket for anionic ligands. Here we propose the possibility of trapping of these ligands in the protein for their requirement in the metabolic processes.
Journal Article
Structural Ordering of Disordered Ligand-Binding Loops of Biotin Protein Ligase into Active Conformations as a Consequence of Dehydration
by
Khare, Garima
,
Surolia, Avadhesha
,
Tyagi, Anil K.
in
Acetyl-CoA carboxylase
,
Amino Acid Sequence
,
Bacterial Proteins - chemistry
2010
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Journal Article
Novel, fully human, anti-PfCSP antibodies with potent antimalarial activity using a phage display based strategy
by
Rath, Pragyan Parimita
,
Tabrez, Shams
,
Singh, Agam P.
in
Adjuvants
,
Allergy and Immunology
,
Animals
2025
Developing an effective vaccine against malaria remains a prime goal of human health. The circumsporozoite protein (CSP) is a major surface protein of the sporozoites, and is the target of two licensed Plasmodium falciparum malaria vaccines, RTS,S/AS01, named Mosquirix and R21/Matrix-M. However, to improve the standards set by these vaccines we require a second-generation or prophylactic vaccine. Recently, monoclonal antibodies have emerged as essential biopharmaceutical prophylactic vaccines. The present study targeted recombinant Plasmodium falciparum CSP (rPfCSP) with a phage display of human single-fold scFv Tomlinson libraries I+J and picked fourteen scFvs that represented two independent clones after sequencing; CL1 and CL3. These phages were analysed for their binding to rPfCSP. The selected scFvs were cloned in a human IgG1 Fc tag vector, to generate scFv-Fc full-length antibody clones. CL1 bound rPfCSP protein with a KD of 3.8x10-6M and CL3 bound rPfCSP protein with a KD of 5.6 x 10-5 M. These antibodies detected native PfCSP on the sporozoite surface. Molecular docking simulation revealed that rPfCSP residues interacting with CL1 and CL3 were downstream of the repeat region. These antibodies inhibited the sporozoite infectivity into HepG2 cells, similar to a gold standard monoclonal antibody, 2A10. Low-dose passive transfer of the CL1 and CL3 antibodies conferred high-level protection when challenged with PfCSP-Pb transgenic parasites in the mouse infection model. The high in vitro and in vivo efficacies of the CL1 and CL3 antibodies have applications in malaria immunoprophylaxis in protecting travellers and military servicemen or as a therapeutic vaccine in malaria elimination programmes.
Journal Article
High resolution structural and functional analysis of a hemopexin motif protein from Dolichos
by
Salunke, Dinakar M.
,
Kumar, Ashish
,
Vashisht, Sharad
in
631/1647/2258/1266
,
631/57
,
Amino Acid Motifs
2019
It is increasingly evident that seed proteins exhibit specific functions in plant physiology. However, many proteins remain yet to be functionally characterized. We have screened the seed proteome of
Dolichos
which lead to identification and purification of a protein, DC25. The protein was monomeric and highly thermostable in extreme conditions of pH and salt. It was crystallized and structure determined at 1.28 Å resolution using x-ray crystallography. The high-resolution structure of the protein revealed a four-bladed β-propeller hemopexin-type fold containing pseudo four-fold molecular symmetry at the central channel. While the structure exhibited homology with 2S albumins, variations in the loops connecting the outermost strands and the differences in surface-charge distribution may be relevant for distinct functions. Comparative study of the protein with other seed hemopexins revealed the presence of four conserved water molecules in between the blades which cross-link them and maintain the tertiary structure. The protein exhibited intrinsic peroxidase activity, which could be inhibited by binding of a heme analog. The identification of redox-sensitive cysteine and inhibition of peroxidase activity by iodoacetamide facilitated characterization of the possible active site. The determined peroxidase activity of DC25 may be responsible for rescuing germinating seeds from oxidative stress.
Journal Article
Publisher Correction: High resolution structural and functional analysis of a hemopexin motif protein from Dolichos
by
Salunke, Dinakar M.
,
Kumar, Ashish
,
Vashisht, Sharad
in
Humanities and Social Sciences
,
multidisciplinary
,
Publisher
2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Docking, thermodynamics and molecular dynamics (MD) studies of a non-canonical protease inhibitor, MP-4, from Mucuna pruriens
2018
Sequence and structural homology suggests that MP-4 protein from
Mucuna pruriens
belongs to Kunitz-type protease inhibitor family. However, biochemical assays showed that this protein is a poor inhibitor of trypsin. To understand the basis of observed poor inhibition, thermodynamics and molecular dynamics (MD) simulation studies on binding of MP-4 to trypsin were carried out. Molecular dynamics simulations revealed that temperature influences the spectrum of conformations adopted by the loop regions in the MP-4 structure. At an optimal temperature, MP-4 achieves maximal binding while above and below the optimum temperature, its functional activity is hampered due to unfavourable flexibility and relative rigidity, respectively. The low activity at normal temperature is due to the widening of the conformational spectrum of the Reactive Site Loop (RSL) that reduces the probability of formation of stabilizing contacts with trypsin. The unique sequence of the RSL enhances flexibility at ambient temperature and thus reduces its ability to inhibit trypsin. This study shows that temperature influences the function of a protein through modulation in the structure of functional domain of the protein. Modulation of function through appearance of new sequences that are more sensitive to temperature may be a general strategy for evolution of new proteins.
Journal Article