Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
432 result(s) for "Salvatore, Maria Cristina"
Sort by:
NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological features of the study areas. The proposed approach introduces chronologically-constrained zones as geomorphological evidence for selecting deglaciated areas in the alpine and non-alpine belts. In the present study, the protected and low-anthropic-impacted areas of the Gran Paradiso Group (Italian Western Alps) were analysed using Landsat NDVI time series (1984–2022 CE). The obtained results highlighted a progressive greening even at a higher altitude, albeit not ubiquitous. The detected NDVI trends showed, moreover, how the local factors trigger the greening in low-elevation areas. Spectral reflectance showed a general decrease over time, evidencing the progressive colonisation of recently deglaciated surfaces. The results improved the discrimination between different greening rates in the deglaciated areas of the Alpine regions. The geomorphological-driven approach showed significant potential to support the comprehension of these processes, especially for fast-changing areas such as the high mountain regions.
Pinus cembra L. tree-ring data as a proxy for summer mass-balance variability of the Careser Glacier (Italian Rhaetian Alps)
Glacial extent and mass balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass-balance measurements of more than 60 years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) have been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as an independent proxy to infer the winter mass balance and to obtain an annual mass-balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies, including non-linear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the ‘divergence problem’ responsible for the recently reduced sensitivity of the dendrochronological data. Nevertheless, our results highlight the possibility of performing MXD-based dendroglaciological reconstructions using this stable and reliable proxy.
Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic Ice Sheet, Ricker Hills, Victoria Land
One of the major issues in (palaeo-) climatology is the response of Antarctic ice sheets to global climate changes. Antarctic ice volume has varied in the past but the extent and timing of these fluctuations are not well known. In this study, we address the question of amplitude and timing of past Antarctic ice level changes by surface exposure dating using in situ produced cosmogenic nuclides (10Be and 21Ne). The study area lies in the Ricker Hills, a nunatak at the boundary of the East Antarctic Ice Sheet in southern Victoria Land. By determining exposure ages of erratic boulders from glacial drifts we directly date East Antarctic Ice Sheet variations. Erosion-corrected neon and beryllium exposure ages indicate that a major ice advance reaching elevations of about 500 m above present ice levels occurred between 1.125 and 1.375 million years before present. Subsequent ice fluctuations were of lesser extent but timing is difficult as all erratic boulders from related deposits show complex exposure histories. Sample-specific erosion rates were on the order of 20–45 cm Ma-1 for a quartzite and 10–65 cm Ma-1 for a sandstone boulder and imply that the modern cold, arid climate has persisted since at least the early Pleistocene.
Blue intensity of Swiss stone pine as a high-frequency temperature proxy in the Alps
Tree rings are widely used for climatic reconstructions and for improving our understanding of ongoing climate change in high-altitude sensitive areas. X-ray maximum latewood density is a very powerful parameter to reconstruct past climatic variations, especially if compared to tree-ring width, but this method is neither inexpensive nor timesaving. However, blue intensity (BI) has resulted in an excellent maximum wood density surrogate that measures the intensity of reflected light from latewood in the blue spectra. This methodology is still considered a prototype parameter, and more data are needed for validation of the method. We present the first BI values coming from Swiss stone pine (Pinus cembra L.) collected on the southern margin of the Alps. Analyses were performed by testing different solvents and polishing techniques, as well as different CooRecorder pixel percentage settings. The results demonstrate that solvents and software parameters have little influence on the final chronologies. Dendroclimatic analyses demonstrate that Swiss stone pine BI can be a useful tool to extract at least the high-frequency variations in July–August temperatures with a correlation coefficient of up to 0.6 (over the 1800–2017 time period). The immunity of Swiss stone pine to insect defoliator outbreaks further enhances the reliability of the BI values of this species in reconstructing past high-frequency temperature variations in high-altitude sensitive areas.
Multi-century mean summer temperature variations in the Southern Rhaetian Alps reconstructed from Larix decidua blue intensity data
Ongoing climate change is likely to cause a worldwide temperature increase of 1.5 °C by the mid-century. To contextualize these changes in a long-term context, historical climatological data extending beyond data obtained from instrumental records are needed. This is even more relevant in remote areas characterized by complex climatic influences and where climate sensitivity is pronounced, such as the European Alps. Considering their high temporal resolution, dendrochronological data have been recognized as a fundamental tool for reconstructing past climate variations. In this study, we present a comprehensive dendroclimatic analysis in which blue intensity (BI) data derived from European larch (Larix decidua Mill.) trees in the Southern Rhaetian Alps were employed. By establishing the relationships between BI patterns in tree rings and climate variables, we explored the possibility of using the obtained data for constructing a high-resolution, long-term climate record. The results in the high-frequency domain showed that BI data from European larches explained up to 38.4 % (26.7 %–48.5 %) of the June–August mean temperature variance in the study area; this result is 70 % greater than the mean temperature variance percentages explained by total ring width measurements for the same period in the area. Moreover, the correlation values between the BI data and June–August mean temperature are stable over time, ranging between 0.40 and 0.71 (mean value of 0.57), considering a moving window of 50 years, and at spatial scale, with significant values over the western and central Mediterranean areas returned for all the considered time windows. In fine, the regression performance using BI data is comparable to that using data from more expensive methods of analysis. The results from this investigation will extend the current knowledge on the applicability of using BI data to study the European larch, and the reconstruction described herein is the first attempt to determine whether this proxy can be used for dendroclimatic aims. Thus, BI data represent a suitable tool for extending our knowledge beyond that obtained from instrumental records and for facilitating a more robust evaluation of climate models and future climate scenarios in the Alpine region.
Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature
We here analyze the tree-ring series from 42 high-altitude sites in a region of the European Alps centered over the 1° × 1° grid cell 46°N 10°E to reconstruct the summer temperature signal using an approach based on site chronologies and only on trees that are highly sensitive to temperature (HSTT). For the forest sites of Larix decidua Mill . , Picea abies Karst., and Pinus cembra L., we find that HSTT trees, representing 33 %, 25 % and 27.5 % of all trees in the dataset, respectively, are growing larger tree-rings in recent periods (since approximately 1935 AD) compared with the other trees in the region. The temperature reconstruction based on the HSTT chronology is consistent with other reconstructions already available in the European Alps, well preserves the long-term temperature variability and suggests lower summer temperatures than those derived from the chronology avgALL (based on the entire dataset) during the periods 1725–1800 AD and 1845–1910 AD. Since 1935, the HSTT reconstruction is more efficient than the avgALL in recording the recent temperature trends. Overall, we stress the importance of testing for the presence of HSTT trees at each site, as their incidence may influence the temperature reconstructions as much as the other known factors related to, e.g., site characteristics, tree age and species sensitivity. HSTT trees may enhance the long-term climate signal for performing reliable climate reconstructions because they reduce potential biases derived from non-climatic influences on tree growth. Our results can further help to avoid the divergence problem with the instrumental records, particularly for those periods where the avgALL curve shows a tendency to smooth the long-term summer temperature signal.
Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls
Quantitative satellite observations only provide an assessment of ice sheet mass loss over the last four decades. To assess long-term drivers of ice sheet change, geological records are needed. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. To reconstruct changes in ice thickness, we use surface exposure ages of glacial erratics deposited on nunataks adjacent to fast-flowing sections of David Glacier. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show David Glacier experienced rapid thinning of up to 2 m/yr during the mid-Holocene (∼ 6.5 ka). Thinning slowed at 6 ka, suggesting the initial formation of the Drygalski Ice Tongue at this time. Our work, along with ice thinning records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred 4–7 kyr after the peak period of ice thinning indicated in a suite of published ice sheet models. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. To identify the drivers of glacier thinning along the David Glacier, we use a glacier flowline model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding-line retreat are controlled by either enhanced sub-ice-shelf melting, reduced lateral buttressing or a combination of the two, leading to marine ice sheet instability. Such rapid glacier thinning events during the mid-Holocene are not fully captured in continental- or catchment-scale numerical modelling reconstructions. Together, our chronology and modelling identify and constrain the drivers of a ∼ 2000-year period of dynamic glacier thinning in the recent geological past.
Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s
A first assessment of the main climatic drivers that modulate the tree-ring width (RW) and maximum latewood density (MXD) along the Italian Peninsula and northeastern Sicily was performed using 27 forest sites, which include conifers (RW and MXD) and broadleaves (only RW). Tree-ring data were compared using the correlation analysis of the monthly and seasonal variables of temperature, precipitation and standardized precipitation index (SPI, used to characterize meteorological droughts) against each species-specific site chronology and against the highly sensitive to climate (HSTC) chronologies (based on selected indexed individual series). We find that climate signals in conifer MXD are stronger and more stable over time than those in conifer and broadleaf RW. In particular, conifer MXD variability is directly influenced by the late summer (August, September) temperature and is inversely influenced by the summer precipitation and droughts (SPI at a timescale of 3 months). The MXD sensitivity to August–September (AS) temperature and to summer drought is mainly driven by the latitudinal gradient of summer precipitation amounts, with sites in the northern Apennines showing stronger climate signals than sites in the south. Conifer RW is influenced by the temperature and drought of the previous summer, whereas broadleaf RW is more influenced by summer precipitation and drought of the current growing season. The reconstruction of the late summer temperatures for the Italian Peninsula for the past 300 years, based on the HSTC chronology of conifer MXD, shows a stable model performance that underlines periods of climatic cooling (and likely also wetter conditions) in 1699, 1740, 1814, 1914 and 1938, and follows well the variability of the instrumental record and of other tree-ring-based reconstructions in the region. Considering a 20-year low-pass-filtered series, the reconstructed temperature record consistently deviates < 1 °C from the instrumental record. This divergence may also be due to the precipitation patterns and drought stresses that influence the tree-ring MXD at our study sites. The reconstructed late summer temperature variability is also linked to summer drought conditions and it is valid for the west–east oriented region including Sardinia, Sicily, the Italian Peninsula and the western Balkan area along the Adriatic coast.
Reconstructing fluctuations of la mare glacier (eastern italian alps) in the late holocene: new evidence for a little ice age maximum around 1600 ad
Field observations, old terrestrial photographs and maps, aerial orthophotos and detailed geomorphological mapping were used for compiling and validating a 119-year cumulative record of terminus changes for a are lacier, astern talian lps. ate olocene glacier maxima preceding direct observations were reconstructed by applying age dating techniques (radiocarbon and lichenometry) to glacial deposits in the proglacial area of the glacier. Results show that the glacier reached its maximal position around 1600 ad, followed by smaller advances in the eighteenth century, while in the nineteenth century it did not reach or overrun these positions. A similar behaviour for neighbouring glaciers was reported by previous works, documenting absolute ate olocene maxima in the seventeenth or eighteenth centuries. By contrast, multi-century reconstructions available for the north-western lps show that in the nineteenth century, glaciers were at their maximum or very close to previous maxima achieved in the first half of the seventeenth century. Climatic causes for these discrepancies have been examined, analyzing multi-proxy climatic reconstructions starting in 1500 ad, but also morphodynamic processes linked to the bedrock characteristics of a are lacier could have played a role in modulating its response to climatic changes.
Analysis of the mass balance time series of glaciers in the Italian Alps
This work presents an analysis of the mass balance series of nine Italian glaciers, which were selected based on the length, continuity and reliability of observations. All glaciers experienced mass loss in the observation period, which is variable for the different glaciers and ranges between 10 and 47 years. The longest series display increasing mass loss rates, which were mainly due to increased ablation during longer and warmer ablation seasons. The mean annual mass balance (Ba) in the decade from 2004 to 2013 ranged from −1788 to −763 mm w.e. yr−1. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain residual accumulation areas in their upper reaches. The response of glaciers is mainly controlled by the combination of October–May precipitations and June–September temperatures, but rapid geometric adjustments and atmospheric changes lead to modifications in their response to climatic variations. In particular, a decreasing correlation of Ba with the June–September temperatures and an increasing correlation with October–May precipitations are observed for some glaciers. In addition, the October–May temperatures tend to become significantly correlated with Ba, possibly indicating a decrease in the fraction of solid precipitation, and/or increased ablation, during the accumulation season. Because most of the monitored glaciers have no more accumulation area, their observations series are at risk due to their impending extinction, thus requiring a replacement soon.