Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
14
result(s) for
"Samelson, R. M. (Roger M.)"
Sort by:
The theory of large-scale ocean circulation
\"This is a concise but comprehensive introduction to the basic elements of the theory of large-scale ocean circulation for advanced students and researchers\"-- Provided by publisher.
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll
by
Gaube, Peter
,
Schlax, Michael G.
,
Chelton, Dudley B.
in
Advection
,
Artificial satellites
,
Centroids
2011
Oceanic Rossby waves have been widely invoked as a mechanism for large-scale variability of chlorophyll (CHL) observed from satellites. High-resolution satellite altimeter measurements have recently revealed that sea-surface height (SSH) features previously interpreted as linear Rossby waves are nonlinear mesoscale coherent structures (referred to here as eddies). We analyze 10 years of measurements of these SSH fields and concurrent satellite measurements of upper-ocean CHL to show that these eddies exert a strong influence on the CHL field, thus requiring reassessment of the mechanism for the observed covariability of SSH and CHL. On time scales longer than 2 to 3 weeks, the dominant mechanism is shown to be eddy-induced horizontal advection of CHL by the rotational velocities of the eddies.
Journal Article
Numerical Simulation of Air–Sea Coupling during Coastal Upwelling
by
Skyllingstad, Eric D.
,
Samelson, Roger M.
,
Barbour, Philip L.
in
Atmosphere
,
Atmospheric boundary layer
,
Atmospheric models
2007
Air–sea coupling during coastal upwelling was examined through idealized three-dimensional numerical simulations with a coupled atmosphere–ocean mesoscale model. Geometry, topography, and initial and boundary conditions were chosen to be representative of summertime coastal conditions off the Oregon coast. Over the 72-h simulations, sea surface temperatures were reduced several degrees near the coast by a wind-driven upwelling of cold water that developed within 10–20 km off the coast. In this region, the interaction of the atmospheric boundary layer with the cold upwelled water resulted in the formation of an internal boundary layer below 100-m altitude in the inversion-capped boundary layer and a reduction of the wind stress in the coupled model to half the offshore value. Surface heat fluxes were also modified by the coupling. The simulated modification of the atmospheric boundary layer by ocean upwelling was consistent with recent moored and aircraft observations of the lower atmosphere off the Oregon coast during the upwelling season. For these 72-h simulations, comparisons of coupled and uncoupled model results showed that the coupling caused measurable differences in the upwelling circulation within 20 km off the coast. The coastal Ekman transport divergence was distributed over a wider offshore extent and a thinner ocean surface boundary layer, with consistently smaller offshore and depth-integrated alongshore transport formed in the upwelling region, in the coupled case relative to the uncoupled case. The results indicate that accurate models of coastal upwelling processes can require representations of ocean–atmosphere interactions on short temporal and horizontal scales.
Journal Article
Tropical Instability Waves as a Resonance between Equatorial Rossby Waves
by
Samelson, Roger M
,
Chelton, Dudley B
,
Lyman, John M
in
Climate
,
Climate models
,
Ocean currents
2005
To understand the characteristics of sea surface height signatures of tropical instability waves (TIWs), a linearized model of the central Pacific Ocean was developed in which the vertical structures of the state variables are projected onto a set of orthogonal baroclinic eigenvectors. In lieu of in situ current measurements with adequate spatial and temporal resolution, the mean current structure used in the model was obtained from the Parallel Ocean Climate Model (POCM). The TIWs in the linear model have cross-equatorial structure and wavenumber-frequency content similar to the TIWs in POCM, even when the vertical structures of the state variables are projected onto only the first two orthogonal baroclinic eigenvectors. Because this model is able to reproduce TIWs with relatively simple vertical structure, it is possible to examine the mechanism for the formation of TIWs. TIWs are shown to form from a resonance between two equatorial Rossby waves as the strength of the background currents is slowly increased. [PUBLICATION ABSTRACT]
Journal Article
Instability of the Chaotic ENSO: The Growth-Phase Predictability Barrier
2001
The local predictability of the El Nino-Southern Oscillation (ENSO) is examined by the analysis of the evolution of small disturbances to an unstable 4.3-yr ENSO cycle in the Cane-Zebiak model forced by perpetual July conditions. The 4.3-yr cycle represents the dominant near-recurrent behavior in this weakly chaotic regime, so analysis of this single cycle gives useful insights into the dynamics of the irregular oscillation.
Journal Article
A Numerical Modeling Study of Warm Offshore Flow over Cool Water
by
Skyllingstad, Eric D.
,
Mahrt, Larry
,
Barbour, Phil
in
Aquatic birds
,
Atmosphere
,
Barrier islands
2005
Numerical simulations of boundary layer evolution in offshore flow of warm air over cool water are conducted and compared with aircraft observations of mean and turbulent fields made at Duck, North Carolina. Two models are used: a two-dimensional, high-resolution mesoscale model with a turbulent kinetic energy closure scheme, and a three-dimensional large-eddy simulation (LES) model that explicitly resolves the largest turbulent scales. Both models simulate general aspects of the decoupling of the weakly convective boundary layer from the surface, as it is advected offshore, and the formation of an internal boundary layer over the cool water. Two sets of experiments are performed, which indicate that complexities in upstream surface conditions play an important role in controlling the observed structure. The first (land–sea) experiments examine the transition from a rough surface having the same temperature as the ambient lower atmosphere, to a smooth ocean surface that is 5°C cooler. In the second (barrier island) experiment, a 4-km strip along the coastline having surface temperature 5°C warmer than the ambient atmosphere is introduced, to represent a narrow, heated barrier island present at the Duck site. In the land–sea case, it is found that the mesoscale model overpredicts turbulent intensity in the upper half of the boundary layer, forcing a deeper boundary layer. Both the mesoscale and LES models produce only a small change in the boundary layer shear and tend to decrease the momentum flux near the surface much more rapidly than the observations. Results from the barrier-island case are more in line with the observed momentum and turbulence structure, but still have a reduced momentum flux in the lower boundary layer in comparison with the observations. The authors find that turbulence in the LES model generated by convection over the heated land surface is stronger than in the mesoscale model, and tends to persist offshore for greater distances because of greater shear in the upper boundary layer winds. Analysis of the mesoscale model results suggests that better estimation of the mixing length could improve the turbulence closure in regions where the surface fluxes are changing rapidly.
Journal Article
THE LATMIX SUMMER CAMPAIGN
2015
Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m² s−1as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.
Journal Article
Singular Vectors and Time-Dependent Normal Modes of a Baroclinic Wave-Mean Oscillation
by
Samelson, Roger M.
,
Wolfe, Christopher L.
in
Classical studies
,
Dynamical systems
,
Earth, ocean, space
2008
Linear disturbance growth is studied in a quasigeostrophic baroclinic channel model with several thousand degrees of freedom. Disturbances to an unstable, nonlinear wave-mean oscillation are analyzed, allowing the comparison of singular vectors and time-dependent normal modes (Floquet vectors). Singular vectors characterize the transient growth of linear disturbances in a specified inner product over a specified time interval and, as such, they complement and are related to Lyapunov vectors, which characterize the asymptotic growth of linear disturbances. The relationship between singular vectors and Floquet vectors (the analog of Lyapunov vectors for time-periodic systems) is analyzed in the context of a nonlinear baroclinic wave-mean oscillation. It is found that the singular vectors divide into two dynamical classes that are related to those of the Floquet vectors. Singular vectors in the “wave dynamical” class are found to asymptotically approach constant linear combinations of Floquet vectors. The most rapidly decaying singular vectors project strongly onto the most rapidly decaying Floquet vectors. In contrast, the leading singular vectors project strongly onto the leading adjoint Floquet vectors. Examination of trajectories that are near the basic cycle show that the leading Floquet vectors are geometrically tangent to the local attractor while the leading initial singular vectors point off the local attractor. A method for recovering the leading Floquet vectors from a small number of singular vectors is additionally demonstrated.
Journal Article
Normal-Mode Analysis of a Baroclinic Wave-Mean Oscillation
2006
The stability of a time-periodic baroclinic wave-mean oscillation in a high-dimensional two-layer quasigeostrophic spectral model is examined by computing a full set of time-dependent normal modes (Floquet vectors) for the oscillation. The model has 72 × 62 horizontal resolution and there are 8928 Floquet vectors in the complete set. The Floquet vectors fall into two classes that have direct physical interpretations: wave-dynamical (WD) modes and damped-advective (DA) modes. The WD modes (which include two neutral modes related to continuous symmetries of the underlying system) have large scales and can efficiently exchange energy and vorticity with the basic flow; thus, the dynamics of the WD modes reflects the dynamics of the wave-mean oscillation. These modes are analogous to the normal modes of steady parallel flow. On the other hand, the DA modes have fine scales and dynamics that reduce, to first order, to damped advection of the potential vorticity by the basic flow. While individual WD modes have immediate physical interpretations as discrete normal modes, the DA modes are best viewed, in sum, as a generalized solution to the damped advection problem. The asymptotic stability of the time-periodic basic flow is determined by a small number of discrete WD modes and, thus, the number of independent initial disturbances, which may destabilize the basic flow, is likewise small. Comparison of the Floquet exponent spectrum of the wave-mean oscillation to the Lyapunov exponent spectrum of a nearby aperiodic trajectory suggests that this result will still be obtained when the restriction to time periodicity is relaxed.
Journal Article
The Duality between the Boussinesq and Non-Boussinesq Hydrostatic Equations of Motion
by
Samelson, Roger M.
,
de Szoeke, Roland A.
in
Earth, ocean, space
,
Exact sciences and technology
,
External geophysics
2002
The hydrostatic equations of motion for ocean circulation, written in terms of pressure as the vertical coordinate, and without making the Boussinesq approximation in the continuity equation, correspond very closely with the hydrostatic Boussinesq equations written in terms of depths as the vertical coordinate. Two mathematical equivalences between these non-Boussinesq and Bouissnesq equation sets are demonstrated.
Journal Article