Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Samuel, Rosabelle"
Sort by:
Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae)
Fil: Carrizo Garcia, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Genetic diversity and population structure of Piper nigrum (black pepper) accessions based on next-generation SNP markers
Despite the economic importance of Piper nigrum (black pepper), a highly valued crop worldwide, development and utilization of genomic resources have remained limited, with diversity assessments often relying on only a few samples or DNA markers. Here we employed restriction-site associated DNA sequencing to analyze 175 P . nigrum accessions from eight main black pepper growing regions in Sri Lanka. The sequencing effort resulted in 1,976 million raw reads, averaging 11.3 million reads per accession, revealing 150,356 high-quality single nucleotide polymorphisms (SNPs) distributed across 26 chromosomes. Population structure analysis revealed two subpopulations ( K = 2): a dominant group consisting of 152 accessions sourced from both home gardens and large-scale cultivations, and a smaller group comprising 23 accessions exclusively from native collections in home gardens. This clustering was further supported by principal component analysis, with the first two principal components explaining 35.2 and 12.1% of the total variation. Genetic diversity analysis indicated substantial gene flow ( Nm = 342.21) and a low fixation index ( F ST = 0.00073) between the two subpopulations, with no clear genetic differentiation among accessions from different agro-climatic regions. These findings demonstrate that most current black pepper genotypes grown in Sri Lanka share a common genetic background, emphasizing the necessity to broaden the genetic base to enhance resilience to biotic and abiotic stresses. This study represents the first attempt at analyzing black pepper genetic diversity using high-resolution SNP markers, laying the foundation for future genome-wide association studies for SNP-based gene discovery and breeding.
Processes driving the adaptive radiation of a tropical tree ( Diospyros , Ebenaceae) in New Caledonia, a biodiversity hotspot
Due to its special geological history, the New Caledonian Archipelago is a mosaic of soil types, and in combination with climatic conditions this results in a heterogeneous environment across relatively small distances. A group of over 20 endemic species of Diospyros (Ebenaceae) has rapidly and recently radiated on the archipelago after a single long-distance dispersal event. Most of the Diospyros species in the radiating group are morphologically and ecologically well differentiated, but they exhibit low levels of DNA variability. To investigate the processes that shaped the diversification of this group we employed restriction site associated DNA sequencing (RADseq). Over 8400 filtered SNPs generally confirm species delimitations and produce a well-supported phylogenetic tree. Our analyses document local introgression, but only a limited potential for gene flow over longer distances. The phylogenetic relationships point to an early regional clustering among populations and species, indicating that allopatric speciation with respect to macrohabitat (i.e., climatic conditions) may have had a role in the initial differentiation within the group. A later, more rapid radiation involved divergence with respect to microhabitat (i.e., soil preference). Several sister species in the group show a parallel divergence in edaphic preference. Searches for genomic regions that are systematically differentiated in this replicated phenotypic divergence pointed to loci potentially involved in ion binding and cellular transport. These loci appear meaningful in the context of adaptations to soil types that differ in heavy-metal and mineral content. Identical nucleotide changes affected only two of these loci, indicating that introgression may have played a limited role in their evolution. Our results suggest that both allopatric diversification and (parapatric) ecological divergence shaped successive rounds of speciation in the Diospyros radiation on New Caledonia.
Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)
DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses.
Universal Multiplexable matK Primers for DNA Barcoding of Angiosperms
Premise of the study: PCR amplification of the matK barcoding region is often difficult when dealing with multiple angiosperm families. We developed a primer cocktail to amplify this region efficiently across angiosperm diversity. Methods and Results: We developed 14 matK primers (seven forward, seven reverse) for multiplex PCR, using sequences available in GenBank for 178 taxa belonging to 123 genera in 41 families and 18 orders. Universality of these new multiplexed primers was tested with 53 specimens from 44 representative angiosperm families in 23 different orders. Our primers showed high PCR amplification and sequencing success. Conclusions: These results show that our newly developed primers are highly effective for multiplex PCR and can be employed in future barcode projects involving taxonomically diverse samples across angiosperms. Using multiplex primers for barcoding will reduce the cost and time needed for PCR amplification.
Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK DNA sequence data
Phylogenetic relationships within tribe Phyllantheae, the largest tribe of the family Phyllanthaceae, were examined with special emphasis on the large genus PHYLLANTHUS: Nuclear ribosomal ITS and plastid matK DNA sequence data for 95 species of tribe Phyllantheae, including representatives of all subgenera of Phyllanthus (except Cyclanthera) and several hitherto unplaced infrageneric groups, were analyzed. Results for ITS and matK are generally concordant, although some species are placed differently in the plastid and ITS trees, indicating that hybridization/paralogy is involved. Results confirm paraphyly of Phyllanthus in its traditional circumscription with embedded Breynia, Glochidion, Reverchonia, and SAUROPUS: We favor the inclusion of the embedded taxa in Phyllanthus over further generic segregation. Monophyletic Phyllanthus comprises an estimated 1269 species, making it one of the \"giant\" genera. Phyllanthus maderaspatensis is sister to all other species of Phyllanthus, and the genus appears to be of paleotropical origin. Subgenera Isocladus, Kirganelia, and Phyllanthus are polyphyletic, whereas other subgenera appear to be monophyletic. Monotypic Reverchonia is sister to P. abnormis, arborescent section Emblica to herbaceous Urinaria, free-floating aquatic P. fluitans to the weed P. caroliniensis, and the phyllocladous section Choretropsis to the delicate leafy P. claussenii. The unique branching architecture known as \"phyllanthoid branching\" found in most Phyllanthus taxa has been lost (and/or has been derived) repeatedly. Taxonomic divisions within Phyllantheae based on similar pollen morphology are confirmed, and related taxa share similar distributions. We recommend recognition of six clades at generic level: Flueggea s.l. (including Richeriella), Lingelsheimia, Margaritaria, Phyllanthus s.l. (including Breynia, Glochidion, Reverchonia, and Sauropus), P. diandrus, and Savia section HETEROSAVIA:
Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions
Molecular phylogenetic studies of seven plastid DNA regions were used to resolve circumscriptions at generic and infrageneric levels in subfamily Tillandsioideae of Bromeliaceae. One hundred and ten tillandsioid samples were analyzed, encompassing 10 genera, 104 species, and two cultivars. Two species of Bromelioideae, eight species of the polymorphic Pitcairnioideae, and two species of Rapateaceae were selected as outgroups. Parsimony analysis was based on sequence variation of five noncoding (partial 5' and 3' trnK intron, rps16 intron, trnL intron, trnL-trnF intergenic spacer, atpB-rbcL intergenic spacer) and two coding plastid regions (rbcL and matK). Phylogenetic analyses of individual regions produced congruent, but mostly weakly supported or unresolved clades. Results of the combined data set, however, clearly show that subfamily Tillandsioideae is monophyletic. The earliest divergence separates a lineage comprised of Glomeropitcairnia and Catopsis from the \"core\" tillandsioids. In their present circumscriptions, genera Vriesea and Tillandsia, and their subgenera or sections, as well as Guzmania and Mezobromelia, are poly- and/or paraphyletic. Genera Alcantarea, Werauhia, Racinaea, and Viridantha appear monophyletic, but separation of these from Vriesea and Tillandsia makes the remainder paraphyletic. Nevertheless, Tillandsioideae separates into four main clades, which are proposed as tribes, viz., Catopsideae, Glomeropitcairnieae, Vrieseeae, and Tillandsieae.
Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes
BACKGROUND AND AIMS: Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships. METHODS: Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids. KEY RESULTS: Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study. CONCLUSIONS: A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.
Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte, Euphorbiaceae sensu lato) using plastid RBCL DNA sequences
Analysis of plastid rbcL DNA sequence data of the pantropical family Phyllanthaceae (Malpighiales) and related biovulate lineages of Euphorbiaceae sensu lato is presented. Sampling for this study includes representatives of all 10 tribes and 51 of the 60 genera attributed to Euphorbiaceae-Phyllanthoideae. Centroplacus and Putranjivaceae (Phyllanthoideae-Drypeteae) containing a paraphyletic Drypetes are excluded from Phyllanthaceae. Croizatia, previously thought to be a \"basal\" member of Euphorbiaceae-Oldfieldioideae (Picrodendraceae), falls within Phyllanthaceae. Phyllanthaceae with the mentioned adjustments form a monophyletic group consisting of two sister clades that mostly correspond to the distribution of tanniniferous leaf epidermal cells and inflorescence structure. With the exception of bigeneric Hymenocardieae and monotypic Bischofieae, none of the current Phyllanthoideae (Phyllanthaceae) tribal circumscriptions are supported by rbcL. Antidesma, Bischofia, Hymenocardia, Martretia, and Uapaca, all of which have previously been placed in monogeneric families, are confirmed as members of Phyllanthaceae. Savia is polyphyletic, and Cleistanthus appears paraphyletic. Paraphyly of Phyllanthus is also indicated, but this pattern lacks bootstrap support. Morphological characters are discussed and mapped for inflorescence structure, tanniniferous epidermal cells, breeding system, and fruit and embryo type. A table summarizes the main characters of six euphorbiaceous lineages.
Molecular phylogenetics of Phyllanthaceae: evidence from plastid matK and nuclear PHYC sequences
Plastid matK and a fragment of the low-copy nuclear gene PHYC were sequenced for 30 genera of Phyllanthaceae to evaluate tribal and generic delimitation. Resolution and bootstrap percentages obtained with matK are higher than that of PHYC, but both regions show nearly identical phylogenetic patterns. Phylogenetic relationships inferred from the independent and combined data are congruent and differ from previous, morphology-based classifications but are highly concordant with those of the plastid gene rbcL previously published. Phyllanthaceae is monophyletic and gives rise to two well-resolved clades (T and F) that could be recognized as subfamilies. DNA sequence data for Keayodendron and Zimmermanniopsis are presented for the first time. Keayodendron is misplaced in tribe Phyllantheae and belongs to the Bridelia alliance. Zimmermanniopsis is sister to ZIMMERMANNIA: Phyllanthus and Cleistanthus are paraphyletic. Savia and Phyllanthus subgenus Kirganelia are not monophyletic.