Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
152 result(s) for "Sanderson, Benjamin"
Sort by:
A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble
The collection of Earth system models available in the archive of phase 5 of CMIP (CMIP5) represents, at least to some degree, a sample of uncertainty of future climate evolution. The presence of duplicated code as well as shared forcing and validation data in the multiple models in the archive raises at least three potential problems: biases in the mean and variance, the overestimation of sample size, and the potential for spurious correlations to emerge in the archive because of model replication. Analytical evidence is presented to demonstrate that the distribution of models in the CMIP5 archive is not consistent with a random sample, and a weighting scheme is proposed to reduce some aspects of model codependency in the ensemble. A method is proposed for selecting diverse and skillful subsets of models in the archive, which could be used for impact studies in cases where physically consistent joint projections of multiple variables (and their temporal and spatial characteristics) are required.
Precipitation variability increases in a warmer climate
Understanding changes in precipitation variability is essential for a complete explanation of the hydrologic cycle’s response to warming and its impacts. While changes in mean and extreme precipitation have been studied intensively, precipitation variability has received less attention, despite its theoretical and practical importance. Here, we show that precipitation variability in most climate models increases over a majority of global land area in response to warming (66% of land has a robust increase in variability of seasonal-mean precipitation). Comparing recent decades to RCP8.5 projections for the end of the 21 st century, we find that in the global, multi-model mean, precipitation variability increases 3–4% K −1 globally, 4–5% K −1 over land and 2–4% K −1 over ocean, and is remarkably robust on a range of timescales from daily to decadal. Precipitation variability increases by at least as much as mean precipitation and less than moisture and extreme precipitation for most models, regions, and timescales. We interpret this as being related to an increase in moisture which is partially mitigated by weakening circulation. We show that changes in observed daily variability in station data are consistent with increased variability.
Estimating vanishing allowable emissions for 1.5 °C
The remaining carbon budget for 1.5 °C has been a highly discussed tool to communicate the urgency of efforts needed to meet the Paris Agreement. Now, research reassesses IPCC estimates, suggesting that ongoing near-flat emissions and methodological choices can make big relative differences to the tiny remaining 1.5 °C budget.
Against climate hypocrisy: why the IPCC needs its own net-zero target
A robust strategy to slash the IPCC’s carbon emissions would be a testbed for international climate policy — and serve as an example of effective action. A robust strategy to slash the IPCC’s carbon emissions would be a testbed for international climate policy — and serve as an example of effective action. Credit: Amund Aasbrenn Benjamin Sanderson
A fiery wake-up call for climate science
To improve climate resilience for extreme fire events, researchers need to translate modelling uncertainties into useful guidance and be wary of overconfidence. If Earth system models do not capture the severity of recent Australian wildfires, development is urgently needed to assess whether we are underestimating fire risk.
Assessing the costs of historical inaction on climate change
We consider alternative history scenarios in which explicit climate mitigation begins before the present day, estimating the total costs to date of delayed action. Considering a 2(1.5) degree Celsius stabilization target, peak costs are greater and reached sooner with a later start to mitigation, reaching 15(17)% of global GDP in 2085(2070) for a 1990 start and 18(35)% in 2080(2035) for a 2020 start. Further mitigation delay costs a best estimate of an additional 0.5(5) trillion dollars per year. Additional simulations show how optimal mitigation pathways evolve without imposing a warming limit, finding that median abatement levels and costs are not strongly dependent on start date. However, whereas 18(5) percent of optimal solutions starting in 1980 meet the 2(or 1.5) degree target, 5(or 0)% of 2020 simulations meet the goals. Discounted damages due to delayed mitigation action rise by 0.6 trillion US dollars per year in 2020.
Addressing Interdependency in a Multimodel Ensemble by Interpolation of Model Properties
The diverse set of Earth system models used to conduct the CMIP5 ensemble can partly sample the uncertainties in future climate projections. However, combining those projections is complicated by the fact that models developed by different groups share ideas and code and therefore biases. The authors propose a method for combining model results into single or multivariate distributions that are more robust to the inclusion of models with a large degree of interdependency. This study uses a multivariate metric of present-day climatology to assess both model performance and similarity in two recent model intercomparisons, CMIP3 and CMIP5. Model characteristics can be interpolated and then resampled in a space defined by independent climate properties. A form of weighting can be applied by sampling more densely in the region of the space close to the projected observations, thus taking into account both model performance and interdependence. The choice of the sampling distribution’s parameters is a subjective decision that should reflect the researcher’s prior assumptions as to the acceptability of different model errors.
Skill and independence weighting for multi-model assessments
We present a weighting strategy for use with the CMIP5 multi-model archive in the fourth National Climate Assessment, which considers both skill in the climatological performance of models over North America as well as the inter-dependency of models arising from common parameterizations or tuning practices. The method exploits information relating to the climatological mean state of a number of projection-relevant variables as well as metrics representing long-term statistics of weather extremes. The weights, once computed can be used to simply compute weighted means and significance information from an ensemble containing multiple initial condition members from potentially co-dependent models of varying skill. Two parameters in the algorithm determine the degree to which model climatological skill and model uniqueness are rewarded; these parameters are explored and final values are defended for the assessment. The influence of model weighting on projected temperature and precipitation changes is found to be moderate, partly due to a compensating effect between model skill and uniqueness. However, more aggressive skill weighting and weighting by targeted metrics is found to have a more significant effect on inferred ensemble confidence in future patterns of change for a given projection.
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.
The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time‐evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5. Plain Language Summary The Community Land Model (CLM) is the land component of the widely used Community Earth System Model (CESM). Here, we introduce model developments included in CLM version 5 (CLM5), the default land component for CESM2 which will be used for the Coupled Model Intercomparison Project (CMIP6). CLM5 includes many new and updated processes including (1) hydrology and snow features such as spatially explicit soil depth, canopy snow processes, a simple firn model, and a more mechanistic river model, (2) plant hydraulics and hydraulic redistribution, (3) revised nitrogen cycling with flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake, (4) expansion to six crop types (global) and time‐evolving irrigated areas and fertilization rates, (5) improved urban building energy model, and (6) carbon isotopes. New optional features include a demographically structured dynamic vegetation model, ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Model performance is generally improved for most assessed variables and metrics, though clear establishment of improvement or degradation is challenging due to model complexity as well as observational data limitations. Nonetheless, CLM5 is increasingly suited for research into a broad range of societally relevant scientific questions related to the terrestrial system. Key Points Updated Community Land Model has more hydrological and ecological process fidelity and more comprehensive representation of land management. The model is systematically evaluated using International Land Model Benchmarking system and shows marked improvement over prior versions.