Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
99
result(s) for
"Sandin, Stuart"
Sort by:
Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies
by
Williams, Gareth J.
,
Sandin, Stuart A.
,
Zgliczynski, Brian J.
in
Animals
,
Biodiversity
,
Biology and Life Sciences
2016
Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods-belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal) and region of study, but was related to the researcher's home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%), their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data.
Journal Article
Linking the green and brown worlds: the prevalence and effect of multichannel feeding in food webs
by
de Mazancourt, Claire
,
Allesina, Stefano
,
Sandin, Stuart A.
in
Aquatic ecosystems
,
Aquatic environment
,
attack rates
2014
Recent advances in food-web ecology highlight that most real food webs (1) represent an interplay between producer- and detritus-based webs and (2) are governed by consumers which are rampant omnivores; feeding on varied prey across trophic levels and resource channels. A possible avenue to unify these advances comes from models demonstrating that predators feeding on distinctly different channels may stabilize food webs. Empirical studies suggest many consumers engage in such behavior by feeding on prey items from both living-autotroph (green) and detritus-based (brown) webs, what we term \"multichannel feeding,\" yet we know little about how common such feeding is across systems and trophic levels, or its effect on system stability. Considering 23 empirical webs, we find that multichannel feeding is equally common across terrestrial, freshwater, and marine systems, with >50% of consumers classified as multichannel consumers. Multichannel feeding occurred most often at the first consumer level, indicating that most taxa at the herbivore/detritivore level are more aptly described as multichannel consumers, and that such feeding is not restricted to predators. We next developed a simple four-compartment nutrient cycling model for consumers eating both autotrophs and detritus with separate parameter sets to represent aquatic vs. terrestrial ecosystems. Modeling results showed that, across terrestrial and aquatic ecosystems, multichannel feeding is stabilizing at low attack rates on autotrophs or when attack rates are asymmetric (moderate on autotrophs while low on detritus), but destabilizing at high attack rates on autotrophs, compared to herbivory- or detritivory-only models. The set of conditions with stable webs with multichannel consumers is narrower, however, for aquatic systems, suggesting that multichannel feeding may generally be more stabilizing in terrestrial systems. Together, our results demonstrate that multichannel feeding is common across ecosystems and may be a stabilizing force in real webs that have consumers with low or asymmetric attack rates.
Journal Article
Microbial Ecology of Four Coral Atolls in the Northern Line Islands
by
Dinsdale, Elizabeth A.
,
Sandin, Stuart A.
,
Angly, Florent
in
Algae
,
Animal Diseases - microbiology
,
Animals
2008
Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.
Journal Article
Baselines and Degradation of Coral Reefs in the Northern Line Islands
2008
Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To this end, we surveyed coral reefs on uninhabited atolls in the northern Line Islands to provide a baseline of reef community structure, and on increasingly populated atolls to document changes associated with human activities. We found that top predators and reef-building organisms dominated unpopulated Kingman and Palmyra, while small planktivorous fishes and fleshy algae dominated the populated atolls of Tabuaeran and Kiritimati. Sharks and other top predators overwhelmed the fish assemblages on Kingman and Palmyra so that the biomass pyramid was inverted (top-heavy). In contrast, the biomass pyramid at Tabuaeran and Kiritimati exhibited the typical bottom-heavy pattern. Reefs without people exhibited less coral disease and greater coral recruitment relative to more inhabited reefs. Thus, protection from overfishing and pollution appears to increase the resilience of reef ecosystems to the effects of global warming.
Journal Article
Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems
by
Vetter, Oliver J.
,
Williams, Gareth J.
,
Sandin, Stuart A.
in
Acidification
,
Animals
,
Anomalies
2013
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.
Journal Article
Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific
by
Brainard, Rusty
,
Vroom, Peter S.
,
Carter, Amanda
in
Animals
,
Anthozoa - physiology
,
Biodiversity
2016
Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms.
Journal Article
Post-settlement demographics of reef building corals suggest prolonged recruitment bottlenecks
2022
For many organisms, early life stages experience significantly higher rates of mortality relative to adults. However, tracking early life stage individuals through time in natural settings is difficult, limiting our understanding of the duration of these ‘mortality bottlenecks’, and the time required for survivorship to match that of adults. Here, we track a cohort of juvenile corals (1–5 cm maximum diameter) from 12 taxa at a remote atoll in the Central Pacific from 2013 to 2017 and describe patterns of annual survivorship. Of the 537 juveniles initially detected, 219 (41%) were alive 4 years later, 163 (30%) died via complete loss of live tissue from the skeleton, and the remaining 155 (29%) died via dislodgement. The differing mortality patterns suggest that habitat characteristics, as well as species-specific features, may influence early life stage survival. Across most taxa, survival fit a logistic model, reaching > 90% annual survival within 4 years. These data suggest that mortality bottlenecks characteristic of ‘recruitment’ extend up to 5 years after individuals can be visually detected. Ultimately, replenishment of adult coral populations via sexual reproduction is needed to maintain both coral cover and genetic diversity. This study provides key insights into the dynamics and time scales that characterize these critical early life stages.
Journal Article
Local human impacts decouple natural biophysical relationships on Pacific coral reefs
by
Gove, Jamison M.
,
Williams, Gareth J.
,
Sandin, Stuart A.
in
anthropogenic activities
,
chlorophyll
,
coral reefs
2015
Human impacts can homogenize and simplify ecosystems, favoring communities that are no longer naturally coupled with (or reflective of) the background environmental regimes in which they are found. Such a process of biophysical decoupling has been explored little in the marine environment due to a lack of replication across the intact-to-degraded ecosystem spectrum. Coral reefs lacking local human impacts provide critical baseline scenarios in which to explore natural biophysical relationships, and provide a template against which to test for their human-induced decoupling. Using 39 Pacific islands, 24 unpopulated (relatively free from local human impacts) and 15 populated (with local human impacts present), spanning 45° of latitude and 65° of longitude, we ask, what are ‘natural’ biophysical relationships on coral reefs and do we see evidence for their human-induced decoupling? Estimates of the percent cover of benthic groups were related to multiple physical environmental drivers (sea surface temperature, irradiance, chlorophyll-a, and wave energy) using mixed-effects models and island mean condition as the unit of replication. Models across unpopulated islands had high explanatory power, identifying key physical environmental drivers of variations in benthic cover in the absence of local human impacts. These same models performed poorly and lost explanatory power when fitted anew to populated (human impacted) islands; biophysical decoupling was clearly evident. Furthermore, key biophysical relationships at populated islands (i.e. those relationships driving benthic variation across space in conjunction with chronic human impact) bore little resemblance to the baseline scenarios identified from unpopulated islands. Our results highlight the ability of local human impacts to decouple biophysical relationships in the marine environment and fundamentally restructure the natural rules of nature.
Journal Article
Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific
by
Fox, Michael D.
,
Kelly, Emily L. A.
,
Sandin, Stuart A.
in
Algae
,
Animals
,
Anthozoa - growth & development
2020
Upwelling is an important source of inorganic nutrients in marine systems, yet little is known about how gradients in upwelling affect primary producers on coral reefs. The Southern Line Islands span a natural gradient of inorganic nutrient concentrations across the equatorial upwelling region in the central Pacific. We used this gradient to test the hypothesis that benthic autotroph ecophysiology is enhanced on nutrient-enriched reefs. We measured metabolism and photophysiology of common benthic taxa, including the algae Porolithon, Avrainvillea, and Halimeda, and the corals Pocillopora and Montipora. We found that temperature (27.2-28.7°C) was inversely related to dissolved inorganic nitrogen (0.46-4.63 μM) and surface chlorophyll a concentrations (0.108-0.147 mg m-3), which increased near the equator. Contrary to our prediction, ecophysiology did not consistently track these patterns in all taxa. Though metabolic rates were generally variable, Porolithon and Avrainvillea photosynthesis was highest at the most productive and equatorial island (northernmost). Porolithon photosynthetic rates also generally increased with proximity to the equator. Photophysiology (maximum quantum yield) increased near the equator and was highest at northern islands in all taxa. Photosynthetic pigments also were variable, but chlorophyll a and carotenoids in Avrainvillea and Montipora were highest at the northern islands. Phycobilin pigments of Porolithon responded most consistently across the upwelling gradient, with higher phycoerythrin concentrations closer to the equator. Our findings demonstrate that the effects of in situ nutrient enrichment on benthic autotrophs may be more complex than laboratory experiments indicate. While upwelling is an important feature in some reef ecosystems, ancillary factors may regulate the associated consequences of nutrient enrichment on benthic reef organisms.
Journal Article
Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors
by
Dinsdale, Elizabeth A.
,
Barott, Katie L.
,
Sandin, Stuart A.
in
Adaptation
,
Adaptation, Physiological
,
Algae
2014
Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes.
Journal Article