Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
31
result(s) for
"Sanmamed, Miguel F."
Sort by:
IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy
by
Fischer, Suzanne
,
Flavell, Richard A.
,
McGeary, Meaghan K.
in
38/91
,
631/154/51/2314
,
631/250/127/1213
2020
Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability
1
,
2
. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials
3
. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a ‘decoy-resistant’ IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8
+
T cells, decreasing the prevalence of exhausted CD8
+
T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1
+
precursor CD8
+
T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.
An engineered version of IL-18 that is resistant to binding by the soluble decoy receptor IL-18BP shows strong anti-tumour activity in mouse models of cancer.
Journal Article
Study of Circulating MicroRNA-125b Levels in Serum Exosomes in Advanced Melanoma
2014
Context.—Malignant melanoma is an aggressive tumor that produces exosomes, which contain microRNAs (miRNAs) that could be of utility in following tumoral cell dysregulation. MicroR-125b is a miRNA whose down-regulation seems to be implicated in melanoma progression. Objective.—To analyze miR-125b levels in serum, and in exosomes obtained from serum, from patients with advanced melanoma. Design.—Serum samples were obtained from 21 patients with advanced melanoma, from 16 disease-free patients with melanoma, and from 19 healthy volunteers. Exosomes were isolated from serum by precipitation, and miR-16 and miR-125b levels were quantified by real-time polymerase chain reaction. Results.—MicroR-16, but not miR-125b, was detected in all samples, and miR-16 levels were significantly higher in serum than they were in exosomes. MicroR-16 expression levels did not differ significantly between the 2 groups (patients with melanoma and healthy donors). There was a significant relationship between miR-125b and miR-16 levels in exosomes. Additionally, miR-125b levels in exosomes were significantly lower in patients with melanoma compared with disease-free patients with melanoma and healthy controls. Conclusions.—Exosomes can provide a suitable material to measure circulating miRNA in melanoma, and miR-16 can be used as an endogenous normalizer. Lower levels of miR-125b in exosomes obtained from serum are associated with advanced melanoma disease, probably reflecting the tumoral cell dysregulation.
Journal Article
CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation
2021
CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.
Costimulation has been shown to be required for optimal activation of T cells and it could be delivered either in trans with respect to the source of CD3-TCR ligation or in cis on the same cell. Here the authors show that CD137 costimulation is more effective when delivered in cis to enhance T cell proliferation and activation.
Journal Article
PD-1H/VISTA mediates immune evasion in acute myeloid leukemia
by
Chandhok, Namrata S.
,
Zhang, Tianxiang
,
Mason, Emily F.
in
Ablation
,
Acute myeloid leukemia
,
Analysis
2024
Acute myeloid leukemia (AML) presents a pressing medical need in that it is largely resistant to standard chemotherapy as well as modern therapeutics, such as targeted therapy and immunotherapy, including anti-programmed cell death protein (anti-PD) therapy. We demonstrate that programmed death-1 homolog (PD-1H), an immune coinhibitory molecule, is highly expressed in blasts from the bone marrow of AML patients, while normal myeloid cell subsets and T cells express PD-1H. In studies employing syngeneic and humanized AML mouse models, overexpression of PD-1H promoted the growth of AML cells, mainly by evading T cell-mediated immune responses. Importantly, ablation of AML cell-surface PD-1H by antibody blockade or genetic knockout significantly inhibited AML progression by promoting T cell activity. In addition, the genetic deletion of PD-1H from host normal myeloid cells inhibited AML progression, and the combination of PD-1H blockade with anti-PD therapy conferred a synergistic antileukemia effect. Our findings provide the basis for PD-1H as a potential therapeutic target for treating human AML.
Journal Article
Charting roadmaps towards novel and safe synergistic immunotherapy combinations
by
Rodriguez-Ruiz, Maria E.
,
Berraondo, Pedro
,
Melero, Ignacio
in
Antibodies
,
Cancer therapies
,
Cell death
2022
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.Melero and colleagues discuss the current landscape of immunotherapy combinations, ongoing clinical studies and the translational implications for efficacy and safety across tumor types.
Journal Article
Preclinical ex vivo and in vivo models to study immunotherapy agents and their combinations as predictive tools toward the clinic
by
Ortego, Ignacio
,
Rodríguez, Inmaculada
,
Armero, María
in
Animals
,
biomarker
,
Cancer therapies
2025
Almost every successful anticancer treatment has been preceded by preclinical scientific breakthroughs that encouraged clinical development. However, therapeutic strategies showing promising preclinical results often fail to confirm activity in clinical trials, particularly in immunotherapy. There are well-known inherent interspecies differences between human and rodent immunobiology. Moreover, human cancers progressively develop in nature over long periods, while preclinical models are deployed under controlled laboratory conditions. This translates into a suboptimal recapitulation of key features of human cancer, such as the marked interindividual differences, intercellular heterogeneity, and the immunoediting effects of chronic immunosurveillance. This review summarizes the current evidence of preclinical experimental models and research tools for cancer immunotherapy applications, with a focus on the incorporation of human sample-based methodologies, both ex vivo and in vivo using humanized mouse models. Methods to exploit highly valuable human specimens in preclinical research are called to bridge the gap between discovery observations in conventional mouse models and efficacy/safety tests in clinical trials. Novel immunotherapy agents and their combinations can be prioritized based on their effects on in vitro patient-derived tumor culture modalities or on as-perfect-as-feasible humanized mouse models bearing human tumor and immune cells. The ultimate goal is to reliably test immunotherapy interventions and reduce eventual clinical failures by means of preclinically prioritizing the best approaches.
Journal Article
Co-targeting of epigenetic regulators and BCL-XL improves efficacy of immune checkpoint blockade therapy in multiple solid tumors
2025
Summary
Epigenetic modulators in combination with proapoptotic drugs have become the standard of care treatment in hematological malignancies. Conversely, these combinations have failed to demonstrate clinical efficacy in solid tumors. To address this discrepancy, we conducted a comprehensive analysis of the anti-tumor activity of epigenetic inhibitors in combination with BH3 mimetics that block anti-apoptotic proteins BCL-XL, BCL2 or MCL1 in a large set of solid tumor cell lines derived from patients and mouse models. Treatment with epigenetic drugs targeting DNA methyltransferase, histone methyltransferase, and histone deacetylase enzymes in combination with a BCL-XL inhibitor resulted in marked synergistic in vitro responses both in human and mouse solid tumor cell lines. This unique BCL-XL dependency was in clear contrast to hematological malignancies, which are largely dependent on BCL2 or MCL1 inhibition under epigenetic drug treatment. Mechanistically, co-targeting of epigenetic regulators and BCL-XL induced expression of endogenous retroelements that led to immunogenic cell death. We thus hypothesized that this response may sensitize tumor cells to immune checkpoint blockade (ICB). Accordingly, treatment with a triple combination of epigenetic and BCL-XL inhibitors with an anti-PD-1 monoclonal antibody in vivo reduced tumor growth and prolonged overall survival in a panel of murine syngeneic and orthotopic models of lung, colorectal and breast carcinomas, melanoma, and glioblastoma, as well as in an immunocompetent human colon cancer model. Using flow cytometry and single-cell RNA sequencing of the tumor microenvironment, we found that the broad activity of the triple therapy relied on the expansion of T and NK cells with cytotoxic potential, an increase in the M1/M2 macrophage ratio, and a reduction of immunosuppressive Treg cells, dendritic cells, and B lymphocytes. In conclusion, we report a novel regimen combining epigenetic and BCL-XL inhibitors with ICB that produces potent anti-tumor responses in multiple preclinical models of solid tumors.
Journal Article
Single-cell characterization of a model of poly I:C-stimulated peripheral blood mononuclear cells in severe asthma
2021
Background
Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods.
Methods
Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study.
Results
PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation.
Conclusions
Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.
Journal Article
Cytokines in clinical cancer immunotherapy
by
Pérez-Gracia, José Luis
,
Berraondo, Pedro
,
Etxeberria, Iñaki
in
631/250/127
,
631/250/251
,
692/308/153
2019
Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials.
Journal Article
Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy
2021
BackgroundBO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections.MethodsMice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/β receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions.ResultsBO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade.ConclusionClinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.
Journal Article