Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
131 result(s) for "Sanna, Alberto"
Sort by:
Mapping spiral structure on the far side of the Milky Way
Little is known about the portion of the Milky Way lying beyond the Galactic center at distances of more than 9 kiloparsec from the Sun. These regions are opaque at optical wavelengths because of absorption by interstellar dust, and distances are very large and hard to measure. We report a direct trigonometric parallax distance of 20.4 − 2.2 + 2.8 kiloparsec obtained with the Very Long Baseline Array to a water maser source in a region of active star formation. These measurements allow us to shed light on Galactic spiral structure by locating the Scutum-Centaurus spiral arm as it passes through the far side of the Milky Way and to validate a kinematic method for determining distances in this region on the basis of transverse motions.
Combined fMRI and eye-tracking evidence on the neural processing of visual ambiguity in photographic aesthetics
While visual ambiguity is known to play a central role in modern art, the neural correlates of its processing remain substantially unexplored in the case of aesthetic stimuli. To fill this gap, we combined eye-tracking and functional magnetic resonance imaging ( f MRI) to investigate both visual exploration, and the associated brain activity and connectivity, when observing (WO) or evaluating (WE) either ambiguous (AMB+) or non-ambiguous (AMB-) artistic photographic stimuli. These manipulations highlighted more fixations (suggestive of higher loading on exploratory processes) when evaluating compared with observing, and stronger right fronto-parietal and occipito-temporal activity (possibly supporting the resolution of visual ambiguity through attentional reorienting to global vs. local aspects) when processing ambiguous compared with non-ambiguous stimuli. Task-by-stimulus type interaction analyses showed that evaluating ambiguous stimuli was specifically associated with stronger fixation-related activity in the left medial prefrontal cortex, as well as decreased connectivity from this region to its right-hemispheric homologue, possibly supporting in-depth visuospatial analyses of complex visual images. These findings pave the way for future studies addressing the role of visual ambiguity in aesthetic appreciation, as well as the factors that might ease vs. hamper its processing and resolution, and their neural correlates.
Challenges for the Routine Application of Drones in Healthcare: A Scoping Review
Uncrewed aerial vehicles (UAVs), commonly known as drones, have emerged as transformative tools in the healthcare sector, offering the potential to revolutionize medical logistics, emergency response, and patient care. This scoping review provides a comprehensive exploration of the diverse applications of drones in healthcare, addressing critical gaps in existing literature. While previous reviews have primarily focused on specific facets of drone technology within the medical field, this study offers a holistic perspective, encompassing a wide range of potential healthcare applications. The review categorizes and analyzes the literature according to key domains, including the transport of biomedical goods, automated external defibrillator (AED) delivery, healthcare logistics, air ambulance services, and various other medical applications. It also examines public acceptance and the regulatory framework surrounding medical drone services. Despite advancements, critical knowledge gaps persist, particularly in understanding the intricate interplay between technological challenges, the existing regulatory framework, and societal acceptance. This review highlights the need for the extensive validation of cost-effective business cases, the development of control techniques that can address time and resource savings within the constraints of real-life scenarios, the design of crash-protected containers, and the establishment of corresponding tests and standards to demonstrate their conformity.
Design of a Service for Hospital Internal Transport of Urgent Pharmaceuticals via Drones
The internal transport of medical goods in a hospital heavily relies on human resources that carry the materials on foot. Such mode of transport may be affected by inefficiencies, e.g., due to bottlenecks, and other logistic challenges. Thus, it may benefit from the use of unmanned aircraft systems in several aspects. Such a scenario introduces specific criticalities for healthcare organizations in densely populated areas and below congested airspace, such as the Milan metropolitan area. The authors applied a co-creation methodology to design a highly automated drone service for the delivery of pharmaceuticals at San Raffaele Hospital, Milan, Italy. The needs of the main users were identified by means of semi-structured interviews and visualization material. Based on those outcomes, a drone service was designed and validated with the main users. It emerged that the main gain point of such a service would be increasing hospital logistics efficiency. The risks tied to the operations (e.g., tampering of the delivery container) were evaluated and appropriate mitigations were identified (e.g., use of tamper-evident seals or mechatronic locks). The information required by the digital system offering the needed logistics functions was analyzed for future development. Recent conceptual and regulatory advancements in the field of Urban Air Mobility (UAM) in Europe were elaborated to outline the digital ecosystem in which aviation and non-aviation actors would exchange information to ensure operations’ efficiency, safety and regulatory compliance.
Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research
Adverse and suboptimal health behaviors and habits are responsible for approximately 40 % of preventable deaths, in addition to their unfavorable effects on quality of life and economics. Our current understanding of human behavior is largely based on static “snapshots” of human behavior, rather than ongoing, dynamic feedback loops of behavior in response to ever-changing biological, social, personal, and environmental states. This paper first discusses how new technologies (i.e., mobile sensors, smartphones, ubiquitous computing, and cloud-enabled processing/computing) and emerging systems modeling techniques enable the development of new, dynamic, and empirical models of human behavior that could facilitate just-in-time adaptive, scalable interventions. The paper then describes concrete steps to the creation of robust dynamic mathematical models of behavior including: (1) establishing “gold standard” measures, (2) the creation of a behavioral ontology for shared language and understanding tools that both enable dynamic theorizing across disciplines, (3) the development of data sharing resources, and (4) facilitating improved sharing of mathematical models and tools to support rapid aggregation of the models. We conclude with the discussion of what might be incorporated into a “knowledge commons,” which could help to bring together these disparate activities into a unified system and structure for organizing knowledge about behavior.
Validity of a Smart-Glasses-Based Step-Count Measure during Simulated Free-Living Conditions
Step counting represents a valuable approach to monitor the amount of daily physical activity. The feet, wrist and trunk have been demonstrated as the ideal locations to automatically detect the number of steps through body-worn devices (i.e., step counters). Key features of such devices are high usability, practicality and unobtrusiveness. Therefore, the opportunity to integrate step-counting functions in daily worn accessories represents one of the recent and most important challenges. In this context, the present study aimed to investigate the validity of a smart-glasses-based step-counter measure by comparing their performances against the most popular commercial step counters. To this purpose, smart glasses data from 26 healthy subjects performing simulated free-living walking conditions along a predefined path were collected. Reference measures from inertial sensors mounted on the subjects’ ankles and data from commercial (waist- and wrists-worn) step counters were acquired during the tests. The results showed an overall percentage error of 1%. In conclusion, the proposed smart glasses could be considered an accurate step counter, showing performances comparable to the most common commercial step counters.
Older Adults’ and Clinicians’ Perspectives on a Smart Health Platform for the Aging Population: Design and Evaluation Study
Over recent years, interest in the development of smart health technologies aimed at supporting independent living for older populations has increased. The integration of innovative technologies, such as the Internet of Things, wearable technologies, artificial intelligence, and ambient-assisted living applications, represents a valuable solution for this scope. Designing such an integrated system requires addressing several aspects (eg, equipment selection, data management, analytics, costs, and users' needs) and involving different areas of expertise (eg, medical science, service design, biomedical and computer engineering). The objective of this study is 2-fold; we aimed to design the functionalities of a smart health platform addressing 5 chronic conditions prevalent in the older population (ie, hearing loss, cardiovascular diseases, cognitive impairments, mental health problems, and balance disorders) by considering both older adults' and clinicians' perspectives and to evaluate the identified smart health platform functionalities with a small group of older adults. Overall, 24 older adults (aged >65 years) and 118 clinicians were interviewed through focus group activities and web-based questionnaires to elicit the smart health platform requirements. Considering the elicited requirements, the main functionalities of smart health platform were designed. Then, a focus group involving 6 older adults was conducted to evaluate the proposed solution in terms of usefulness, credibility, desirability, and learnability. Eight main functionalities were identified and assessed-cognitive training and hearing training (usefulness: 6/6, 100%; credibility: 6/6, 100%; desirability: 6/6, 100%; learnability: 6/6, 100%), monitoring of physiological parameters (usefulness: 6/6, 100%; credibility: 6/6, 100%; desirability: 6/6, 100%; learnability: 5/6, 83%), physical training (usefulness: 6/6, 100%; credibility: 6/6, 100%; desirability: 5/6, 83%; learnability: 2/6, 33%), psychoeducational intervention (usefulness: 6/6, 100%; credibility: 6/6, 100%; desirability: 4/6, 67%; learnability: 2/6, 33%), mood monitoring (usefulness: 4/6, 67%; credibility: 4/6, 67%; desirability: 3/6, 50%; learnability: 5/6, 50%), diet plan (usefulness: 5/6, 83%; credibility: 4/6, 67%; desirability: 1/6, 17%; learnability: 2/6, 33%), and environment monitoring and adjustment (usefulness: 1/6, 17%; credibility: 1/6, 17%; desirability: 0/6, 0%; learnability: 0/6, 0%). Most of them were highly appreciated by older participants, with the only exception being environment monitoring and adjustment. The results showed that the proposed functionalities met the needs and expectations of users (eg, improved self-management of patients' disease and enhanced patient safety). However, some aspects need to be addressed (eg, technical and privacy issues). The presented smart health platform functionalities seem to be able to meet older adults' needs and desires to enhance their self-awareness and self-management of their medical condition, encourage healthy and independent living, and provide evidence-based support for clinicians' decision-making. Further research with a larger and more heterogeneous pool of stakeholders in terms of demographics and clinical conditions is needed to assess system acceptability and overall user experience in free-living conditions.
Masers as probes of the gas dynamics close to forming high-mass stars
Imaging the inner few 1000 AU around massive forming stars, at typical distances of several kpc, requires angular resolutions of better than 0″.1. Very Long Baseline Interferometry (VLBI) observations of interstellar molecular masers probe scales as small as a few AU, whereas (new-generation) centimeter and millimeter interferometers allow us to map scales of the order of a few 100 AU. Combining these informations all together, it presently provides the most powerful technique to trace the complex gas motions in the proto-stellar environment. In this work, we review a few compelling examples of this technique and summarize our findings.
Maser Tracers of Gas Dynamics near Young Stars New Perspectives
The protostellar environment where young stars form has physical conditions suitable to excite a number of molecular maser lines that have traditionally provided an unique probe of star formation kinematics, at the highest angular resolution of radio very long baseline interferometry (VLBI) observations. In the following, we will discuss a number of recent results on our understanding of the gas dynamics traced by masers in the vicinity of young forming stars. These findings provide direct clues on how our community can substantially contribute to the field of star formation in the next decade.
Development of a Cognitive Robotic System for Simple Surgical Tasks
The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR). The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms) for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.