Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
331 result(s) for "Sano, Yuji"
Sort by:
Quarter Century Development of Laser Peening without Coating
This article summarizes the development of laser peening without coating (LPwC) during the recent quarter century. In the mid-1990s, the study of LPwC was initiated in Japan. The objective at that time was to mitigate stress corrosion cracking (SCC) of structural components in operating nuclear power reactors (NPRs) by inducing compressive residual stresses (RSs) on the surface of susceptible components. Since the components in NPRs are radioactive and cooled underwater, full-remote operation must be attained by using lasers of water-penetrable wavelength without any surface preparation. Compressive RS was obtained on the top-surface by reducing pulse energy less than 300 mJ and pulse duration less than 10 ns, and increasing pulse density (number of pulses irradiated on unit area). Since 1999, LPwC has been applied in NPRs as preventive maintenance against SCC using frequency-doubled Q-switched Nd:YAG lasers (λ = 532 nm). To extend the applicability, fiber-delivery of intense laser pulses was developed in parallel and has been used in NPRs since 2002. Early first decade of the 2000s, the effect extending fatigue life was demonstrated even if LPwC increased surface roughness of the components. Several years ago, it was confirmed that 10 to 20 mJ pulse energy is enough to enhance fatigue properties of weld joints of a structural steel. Considering such advances, the development of 20 mJ-class palmtop-sized handheld lasers was initiated in 2014 in a five-year national program, ImPACT under the cabinet office of the Japanese government. Such efforts would pave further applications of LPwC, for example maintenance of infrastructure in the field, beyond the horizons of the present laser systems.
Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau
The episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO 2 -N 2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3 He/ 4 He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth. Deeply-sourced volatiles are releasing from orogenic plateau regions, providing windows to plateau growth dynamics occurring at variable depths. Here the authors show that mantle-derived volatiles reveal the involvement of mantle dynamics in southeastward growth of the Tibetan Plateau.
Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada
The authors provide evidence for the existence of life on Earth in the earliest known sedimentary rocks and suggest that the presence of organic carbon, and low stable-isotope values of graphite from sedimentary rocks in Labrador pushes back the existence of organic life to beyond 3.95 billion years. Earliest life edges towards birth of Earth The beginning of organic life on Earth is being pushed back by evidence from the earliest known sedimentary rocks. Tsuyoshi Komiya and colleagues argue that the presence of organic carbon and stable-isotope excursions in graphite from sedimentary rocks in Labrador, Canada, pushes back the existence of organic life to more than 3.95 billion years ago. Together with recent work showing evidence for a diverse range of living organisms around 3.7 billion years ago, including stromatolites living in sunlit surface waters and bacteria living in deep-sea hydrothermal vents, the work shows that life has been around almost as long as there has been a planet that it can call home. The vestiges of life in Eoarchean rocks have the potential to elucidate the origin of life. However, gathering evidence from many terrains is not always possible 1 , 2 , 3 , and biogenic graphite has thus far been found only in the 3.7–3.8 Ga (gigayears ago) Isua supracrustal belt 4 , 5 , 6 , 7 . Here we present the total organic carbon contents and carbon isotope values of graphite (δ 13 C org ) and carbonate (δ 13 C carb ) in the oldest metasedimentary rocks from northern Labrador 8 , 9 . Some pelitic rocks have low δ 13 C org values of −28.2, comparable to the lowest value in younger rocks. The consistency between crystallization temperatures of the graphite and metamorphic temperature of the host rocks establishes that the graphite does not originate from later contamination. A clear correlation between the δ 13 C org values and metamorphic grade indicates that variations in the δ 13 C org values are due to metamorphism, and that the pre-metamorphic value was lower than the minimum value. We concluded that the large fractionation between the δ 13 C carb and δ 13 C org values, up to 25‰, indicates the oldest evidence of organisms greater than 3.95 Ga. The discovery of the biogenic graphite enables geochemical study of the biogenic materials themselves, and will provide insight into early life not only on Earth but also on other planets.
Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau
A large number of gases are releasing from the medium-high temperature geothermal fields distributed along the large-scale strike-slip fault zones in the southeastern margin of the Tibetan Plateau. In this study, 11 hot spring water and the associated bubbling gas samples were collected along the Xianshuihe-Anninghe fault zones (XSH-ANHFZ) and analyzed for chemical and isotopic compositions. The δ 18 O H 2 O and δ D H 2 O values indicate that hot spring waters are predominantly meteoric origin recharged from different altitudes. Most water samples are significantly enriched in Na + and HCO 3 − due to the dissolution of regional evaporites, carbonates and Na-silicates. 3 He/ 4 He ratios of the gas samples are 0.025–2.73 times the atmospheric value. The 3 He/ 4 He ratios are high in the Kangding region where the dense faults are distributed, and gradually decrease with increasing distance from Kangding towards both sides along the Xianshuihe fault zones (XSHFZ). Hydrothermal fluids have dissolved inorganic carbon (DIC) concentrations from 2 to 42 mmol L −1 , δ 13 C DIC from −6.9‰ to 1.3‰, δ 13 C CO 2 from −7.2‰ to −3.6‰ and Δ 14 C from −997‰ to −909‰. Combining regional geochemical and geological information, the CO 2 sources can be attributed to deep-sourced CO 2 from mantle and metamorphism of marine carbonate, and shallow-sourced CO 2 from the dissolution of marine carbonate and biogenic CO 2 . The mass balance model shows that 11±6% of the DIC is sourced from the dissolution of shallow carbonate minerals, 9±8% formed by pyrolysis of sedimentary organic matter, 80±9% derived from deep metamorphic origin and mantle-derived CO 2 . Among them, the deep-sourced CO 2 in Anninghe fault zones (ANHFZ) is merely metamorphic carbon, whereas ca. 12% and ca. 88% of the deep-sourced CO 2 in the XSHFZ are derived from the mantle and metamorphic carbon, respectively. The average deep-sourced CO 2 flux in the Kangding geothermal field is estimated to be 160 t a −1 . If all the hot springs in various fault zones in the southeastern margin of the Tibetan Plateau are taken into account, the regional deep-sourced CO 2 flux would reach ca. 10 5 t a −1 . These results show that the deep-sourced CO 2 released from non-volcanic areas might account for a considerable proportion of the total amount of global deep-sourced carbon degassing, which should be paid more attention to.
Evidence for the late formation of hydrous asteroids from young meteoritic carbonates
The accretion of small bodies in the Solar System is a fundamental process that was followed by planet formation. Chronological information of meteorites can constrain when asteroids formed. Secondary carbonates show extremely old 53 Mn– 53 Cr radiometric ages, indicating that some hydrous asteroids accreted rapidly. However, previous studies have failed to define accurate Mn/Cr ratios; hence, these old ages could be artefacts. Here we develop a new method for accurate Mn/Cr determination, and report a reliable age of 4,563.4+0.4/−0.5 million years ago for carbonates in carbonaceous chondrites. We find that these carbonates have identical ages, which are younger than those previously estimated. This result suggests the late onset of aqueous activities in the Solar System. The young carbonate age cannot be explained if the parent asteroid accreted within 3 million years after the birth of the Solar System. Thus, we conclude that hydrous asteroids accreted later than differentiated and metamorphosed asteroids. Dating the age of meteorites can tell us when asteroids formed, but uncertainty remains in the Mn–Cr chronometry. This study presents a method for improving Mn/Cr determination and reports an age of 4,563.4 million years ago for carbonates in CM chondrites, which is younger than previous estimates.
A Mechanism for Inducing Compressive Residual Stresses on a Surface by Laser Peening without Coating
Laser peening without coating (LPwC) involves irradiating materials covered with water with intense laser pulses to induce compressive residual stress (RS) on a surface. This results in favorable effects, such as fatigue enhancement; however, the mechanism underlying formation of the compressive RS is not fully understood. In general, tensile RS is imparted on the surface of the material due to shrinkage after heating by laser irradiation. In this study, we assessed the thermo-mechanical effect of single laser pulse irradiation and introduce a phenomenological model to predict the outcome of LPwC. To validate this model, RS distribution across the laser-irradiated spot was analyzed using X-ray diffraction with synchrotron radiation. In addition, the RS was evaluated across a line and over an area, following irradiation by multiple laser pulses with partial overlapping. Large tensile RSs were found in the spot irradiated by the single pulse; however, compressive RSs appeared around the spot. In addition, the surface RS state shifted to the compressive side due to an increase in overlap between neighboring laser pulses on the line and over the area of irradiation. The compressive RSs around a subsequent laser spot effectively compensated the tensile component on the previous spot by controlling the overlap, which may result in compressive RSs on the surface after LPwC.
Isotopic ratios of uranium and caesium in spherical radioactive caesium-bearing microparticles derived from the Fukushima Dai-ichi Nuclear Power Plant
Spherical radioactive caesium (Cs)-bearing microparticles (CsMPs) were emitted during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March, 2011. The emission source (timing) and formation process of these particles remain unclear. In this study, the isotopic ratios of uranium ( 235 U and 238 U) and caesium ( 133 Cs, 134 Cs, 135 Cs, and 137 Cs) isotopes in the five spherical CsMPs (ca. 2 μm in size) sampled at 50 km west of the FDNPP were determined using secondary ion mass spectrometry and laser ablation-ICPMS, respectively. Results showed that the 235 U/ 238 U ratios of CsMPs were homogeneous (1.93 ± 0.03, N  = 4) and close to those estimated for the fuel cores in units 2 and 3, and that the Cs isotopic ratios of CsMP were identical to those of units 2 and 3. These results indicated that U and Cs in the spherical CsMPs originated exclusively from the fuel melt in the reactors. Based on a thorough review of literatures related to the detailed atmospheric releases of radionuclides, the flow of plumes from the FDNPP reactor units during the accident and the U and Cs isotopic ratio results in this study, we hereby suggest that the spherical CsMPs originate only from the fuel in unit 2 on the night of 14 March to the morning of 15 March. The variation range of the analysed 235 U/ 238 U isotopic ratios for the four spherical particles was extremely narrow. Thus, U may have been homogenised in the source through the formation of fuel melt, which ultimately evaporating and taken into CsMPs in the reactor and was released from the unit 2.
Nitrogen isotope evidence for Earth’s heterogeneous accretion of volatiles
The origin of major volatiles nitrogen, carbon, hydrogen, and sulfur in planets is critical for understanding planetary accretion, differentiation, and habitability. However, the detailed process for the origin of Earth’s major volatiles remains unresolved. Nitrogen shows large isotopic fractionations among geochemical and cosmochemical reservoirs, which could be used to place tight constraints on Earth’s volatile accretion process. Here we experimentally determine N-partitioning and -isotopic fractionation between planetary cores and silicate mantles. We show that the core/mantle N-isotopic fractionation factors, ranging from −4‰ to +10‰, are strongly controlled by oxygen fugacity, and the core/mantle N-partitioning is a multi-function of oxygen fugacity, temperature, pressure, and compositions of the core and mantle. After applying N-partitioning and -isotopic fractionation in a planetary accretion and core–mantle differentiation model, we find that the N-budget and -isotopic composition of Earth’s crust plus atmosphere, silicate mantle, and the mantle source of oceanic island basalts are best explained by Earth’s early accretion of enstatite chondrite-like impactors, followed by accretion of increasingly oxidized impactors and minimal CI chondrite-like materials before and during the Moon-forming giant impact. Such a heterogeneous accretion process can also explain the carbon–hydrogen–sulfur budget in the bulk silicate Earth. The Earth may thus have acquired its major volatile inventory heterogeneously during the main accretion phase. How and when Earth acquired its major volatiles N-C-H-S remains unclear. Here the authors show that Earth may have acquired its major volatiles from both reduced and oxidized impactors before and during the Moon-forming giant impact.
Ultrahigh-resolution imaging of biogenic phosphorus and molybdenum in palaeoproterozoic gunflint microfossils
Phosphorus and molybdenum play important roles in the formation of microbial cell structures and specific enzymes crucial for metabolic processes. Nevertheless, questions remain about the preservation of these elements within ancient microfossils. Here, we present shape-accurate ion images capturing phosphorus and molybdenum on Palaeoproterozoic filamentous microfossils by pioneering a methodology using lateral high-resolution secondary ion mass spectrometry. Introducing electrically conductive glass for mounting isolated microfossils facilitated clearer observations with increased secondary ion yields. Phosphorus was detected along the contours of microfossils, providing direct evidence of phospholipid utilization in the cell membrane. Trace amounts of molybdenum were detected within microfossil bodies, suggesting potential remnants of molybdenum-bearing proteins, such as nitrogenase. These findings align with the hypothesized cyanobacterial origin of filamentous gunflint microfossils. Our methodology introduces a groundbreaking tool for obtaining crucial insights into the cellular evolution and metabolic pathways of microorganisms, allowing comparisons of their morphological characteristics.
Landside tritium leakage over through years from Fukushima Dai-ichi nuclear plant and relationship between countermeasures and contaminated water
There has been tritium groundwater leakage to the land side of Fukushima Dai-ichi nuclear power plants since 2013. Groundwater was continuously collected from the end of 2013 to 2019, with an average tritium concentration of approximately 20 Bq/L. Based on tritium data published by Tokyo Electric Power Company Holdings (TEPCO) (17,000 points), the postulated source of the leakage was (1) leaks from a contaminated water tank that occurred from 2013 to 2014, or (2) a leak of tritium that had spread widely over an impermeable layer under the site. Based on our results, sea side and land side tritium leakage monitoring systems should be strengthened.