Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Santacroce, Criselda"
Sort by:
Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas
by
Battaglione, Ezio
,
Catalano, Piera
,
Santacroce, Criselda
in
Alcohol
,
Animal cognition
,
Childbirth & labor
2022
Microplastics (MPs) are defined as plastic particles smaller than 5 mm. They have been found almost everywhere they have been searched for and recent discoveries have also demonstrated their presence in human placenta, blood, meconium, and breastmilk, but their location and toxicity to humans have not been reported to date. The aim of this study was twofold: 1. To locate MPs within the intra/extracellular compartment in human placenta. 2. To understand whether their presence and location are associated with possible structural changes of cell organelles. Using variable pressure scanning electron microscopy and transmission electron microscopy, MPs have been localized in ten human placentas. In this study, we demonstrated for the first time the presence and localization in the cellular compartment of fragments compatible with MPs in the human placenta and we hypothesized a possible correlation between their presence and important ultrastructural alterations of some intracytoplasmic organelles (mitochondria and endoplasmic reticulum). These alterations have never been reported in normal healthy term pregnancies until today. They could be the result of a prolonged attempt to remove and destroy the plastic particles inside the placental tissue. The presence of virtually indestructible particles in term human placenta could contribute to the activation of pathological traits, such as oxidative stress, apoptosis, and inflammation, characteristic of metabolic disorders underlying obesity, diabetes, and metabolic syndrome and partially accounting for the recent epidemic of non-communicable diseases.
Journal Article
Plastic and Placenta: Identification of Polyethylene Glycol (PEG) Compounds in the Human Placenta by HPLC-MS/MS System
by
Lelli, Veronica
,
Fanelli, Giuseppina
,
Catalano, Piera
in
Brief Report
,
Childbirth & labor
,
Fetuses
2022
The placenta is a crucial interface between the fetus and the maternal environment. It allows for nutrient absorption, thermal regulation, waste elimination, and gas exchange through the mother’s blood supply. Furthermore, the placenta determines important adjustments and epigenetic modifications that can change the phenotypic expression of the individual even long after birth. Polyethylene glycol (PEG) is a polyether compound derived from petroleum with many applications, from medicine to industrial manufacturing. In this study, for the first time, an integration of ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) was used to detect suites of PEG compounds in human placenta samples, collected from 12 placentas, originating from physiological pregnancy. In 10 placentas, we identified fragments of PEG in both chorioamniotic membranes and placental cotyledons, for a total of 36 samples.
Journal Article
Plasticenta: Microplastics in Human Placenta
Microplastics are particles smaller than five millimetres obtained from the degradation of plastic objects abandoned in the environment. Microplastics can move from the environment to living organisms and, in fact, they have been found in fishes and mammals.
Six human placentas, prospectively collected from consenting women with uneventful pregnancies, were analyzed by Raman Microspectroscopy to evaluate the presence of microparticles. Detected microparticles were characterized in terms of morphology and chemical composition.
12 microparticles, ranging from 5 to 10 μm in size, were found in 4 out of 6 placentas: 5 in the foetal side, 4 in the maternal side and 3 in the chorioamniotic membranes. All the analyzed microparticles were pigmented: three of them were identified as stained polypropylene, while for the other nine it was possible to identify only the pigments, which are all used for man-made coatings, paints and dyes.
Here we show, for the first time, the presence of microparticles and microplastics in human placenta. This sheds new light on the impact of plastic on human health. Microparticles and microplastics in the placenta, together with the endocrine disruptors transported by them, could have long-term effects on human health.