Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Santander, Nicolás"
Sort by:
Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Ovarian cholesterol efflux: ATP-binding cassette transporters and follicular fluid HDL regulate cholesterol content in mouse oocytes
High density lipoproteins (HDL) take up cholesterol from peripheral tissues via ABC transporters and deliver it to the liver via scavenger receptor class B type I (SR-B1). HDL are the main lipoproteins present in follicular fluid (FF). They are thought to derive from plasma, but their origin is still controversial. SR-B1 knock-out (KO) mice have provided important evidence linking HDL metabolism and female fertility. These mice have cholesterol-rich circulating HDL and female infertility that can be restored by treating mice with the cholesterol-lowering drug probucol. Ovulated oocytes from SR-B1 KO females are dysfunctional and show excess cholesterol. The mechanisms explaining the contribution of FF HDL to oocyte cholesterol homeostasis are unknown. Here, using quantitation of filipin fluorescence we show that in SR-B1 KO ovaries, cholesterol excess is first observed in immature oocytes in antral follicles. By performing cross-transplant experiments between WT and apolipoprotein A-I deficient (ApoA-I KO) mice, which lack the main protein component of HDL, we provide evidence supporting the plasmatic origin of FF HDL. Also, we demonstrate that probucol treatment in SR-B1 KO females results in lowering of cholesterol content in their oocytes. Incubation of oocytes from SR-B1 KO mice with purified WT HDL reduces their cholesterol content, suggesting that HDL promote efflux of excess cholesterol from oocytes. In agreement with this hypothesis, we identified ABC transporters in oocytes and observed that ABCA1 KO oocytes have excess cholesterol and lower viability than WT oocytes. Summary Sentence Follicular fluid HDL and oocyte ABC transporters regulate mouse oocyte cholesterol homeostasis and contribute to female fertility.
Structural and molecular basis of choline uptake into the brain by FLVCR2
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown 1 – 3 . The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood–brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood–brain barrier 4 – 7 . Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown 4 , 5 . Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain. FLVCR2 is expressed in the blood–brain barrier of mouse and human, and is the major mediator of choline uptake into the brain.
Risk Factors and Prevalence of Suicide in Chilean University Students
Mental health among higher education students is a growing public health concern in Chile, where 58 universities host a diverse student population facing significant academic and emotional challenges. This study aimed to determine the prevalence of suicidal risk, ideation, and attempts, as well as associated risk factors in Chilean university students. A cross-sectional study was conducted with 1511 participants (72.3% women, 27.7% men; mean age = 25.7 ± 7.82 years), using a digital self-administered questionnaire that included the Okasha’s Suicidality Scale (OSS), Depression, the Anxiety, and Stress Scale—21 items (DASS-21), the Emotional Exhaustion Scale (ECE), and sociodemographic variables. Logistic regression identified key factors associated with suicide attempts, such as being female (OR = 1.418, 95% CI [1.037, 1.939]), belonging to sexual minorities (OR = 2.539, 95% CI [1.899, 3.396]), being aged 26–30 (OR = 1.952, 95% CI [1.344, 2.836]), and being in the third year of university (OR = 1.483, 95% CI [1.097, 2.005]). Depression (OR = 7.065, 95% CI [5.307, 9.407]) and anxiety (OR = 1.895, 95% CI [1.400, 2.565]) were the strongest predictors, while substance use, including marijuana (OR = 2.107, 95% CI [1.620, 2.740]), cocaine (OR = 1.575, 95% CI [1.193, 2.078]), and non-prescribed antidepressants (OR = 6.383, 95% CI [1.524, 26.733]), significantly increased risk. These findings highlight the urgent need for targeted mental health interventions and policy actions in Chilean higher education to address post-pandemic increases in suicide-related behaviors.
Oxidative Stress in Polycystic Ovary Syndrome: Impact of Combined Oral Contraceptives
Polycystic Ovary Syndrome (PCOS) is a complex hormonal disorder that is associated with heightened metabolic risks. While oxidative stress (OS) is known to play a role in PCOS, the precise nature of the relationship between PCOS and increased OS remains not entirely understood. Combined oral contraceptives (COCs) are the first-line treatment to regulate menstrual cycles and androgen levels, but their impact on oxidative stress requires further study. We conducted a transcriptomic analysis using RNAseq and assessed the levels of various oxidative stress (OS) markers in serum samples from women with PCOS and controls and whether they were using combined oral contraceptives (COCs), including enzymatic activities, FRAP, and 8-isoprostane (8-iso). A total of 359 genes were differentially expressed in women with PCOS compared to control women. Genes differentially expressed were enriched in functions related to inflammation and, interestingly, oxidative stress response. In controls, 8-iso levels were increased in women using COCs, whereas in women with PCOS, 8-iso levels were reduced in those using oral contraceptives (191.1 ± 97 vs. 26.4 ± 21 pg/mL, p: <0.0001). Correlation analyses showed a trend for a negative correlation between 8-iso and Ferriman score in women with PCOS consuming COCs (r = −0.86, p = 0.06) and a negative correlation between GSH and hyperandrogenism in women with PCOS (r = −0.89, p = 0.01). These results reveal the presence of lipid peroxidation in women with PCOS, which was modified by the use of COCs, providing new insights into the pathophysiology of PCOS in the Chilean population.
Deficient Vitamin E Uptake During Development Impairs Neural Tube Closure in Mice Lacking Lipoprotein Receptor SR-BI
SR-BI is the main receptor for high density lipoproteins (HDL) and mediates the bidirectional transport of lipids, such as cholesterol and vitamin E, between these particles and cells. During early development, SR-BI is expressed in extraembryonic tissue, specifically in trophoblast giant cells in the parietal yolk sac. We previously showed that approximately 50% of SR-BI −/− embryos fail to close the anterior neural tube and develop exencephaly, a perinatal lethal condition. Here, we evaluated the role of SR-BI in embryonic vitamin E uptake during murine neural tube closure. Our results showed that SR-BI −/− embryos had a very low vitamin E content in comparison to SR-BI +/+ embryos. Whereas SR-BI −/− embryos with closed neural tubes (nSR-BI −/− ) had high levels of reactive oxygen species (ROS), intermediate ROS levels between SR-BI +/+ and nSR-BI −/− embryos were detected in SR-BI −/− with NTD (NTD SR-BI −/− ). Reduced expression of Pax3, Alx1 and Alx3 genes was found in NTD SR-BI −/− embryos. Maternal α-tocopherol dietary supplementation prevented NTD almost completely (from 54% to 2%, p < 0.001) in SR-BI −/− embryos and normalized ROS and gene expression levels. In sum, our results suggest the involvement of SR-BI in the maternal provision of embryonic vitamin E to the mouse embryo during neural tube closure.
High density lipoprotein cholesterol and proteome in SR-B1 KO mice: lost in precipitation
Scavenger receptor class B type 1 (SR-B1) plays an essential role in high density lipoprotein (HDL) metabolism. SR-B1 deficient (SR-B1 KO) mice are prone to atherosclerosis and exhibit abnormally large, cholesterol-rich, dysfunctional HDL. In a recent issue of J Transl Med, Cao et al. described results of proteomics analyses of HDL isolated from wild-type (WT) and SR-B1 KO mice using precipitation of large lipoproteins with polyethylene glycol (PEG). They report abnormalities in SR-B1 KO HDL protein components that correlate with HDL function. In this commentary, we describe and discuss the differences in the results published by Cao et al. and those obtained in a recent study from our laboratory using shotgun proteomics of HDL of SR-B1 KO mice isolated by ultracentrifugation. We propose that different HDL purification procedures used may account for the discrepancies observed. We show that SR-B1 KO HDL purification using either PEG or dextran sulfate precipitation results in enrichment of small HDL subclasses, and may therefore underestimate alterations in lipoprotein composition or function. Compared to HDL obtained by ultracentrifugation, HDL isolated by PEG precipitation show a lower ApoE/ApoA-I proportion and reduced cholesterol content. HDL protein components described by Cao et al. or our laboratory are mostly inconsistent: only 33 HDL proteins were detected in both datasets, whereas a significant number of proteins were only identified by Cao et al. (n = 43) or Contreras-Duarte et al. (n = 26) datasets. The relative abundance of HDL-associated peptide and protein levels in WT vs SR-B1 HDL were also highly different in both datasets. This study indicates that caution must be taken when interpreting results from HDL isolated by chemical precipitation.
Transcriptional profiling of embryos lacking the lipoprotein receptor SR-B1 reveals a regulatory circuit governing a neurodevelopmental or metabolic decision during neural tube closure
Background The high-density lipoprotein receptor SR-B1 mediates cellular uptake of several lipid species, including cholesterol and vitamin E. During early mouse development, SR-B1 is located in the maternal-fetal interface, where it facilitates vitamin E transport towards the embryo. Consequently, mouse embryos lacking SR-B1 are vitamin E-deficient, and around half of them fail to close the neural tube and show cephalic neural tube defects (NTD). Here, we used transcriptomic profiling to identify the molecular determinants of this phenotypic difference between SR-B1 deficient embryos with normal morphology or with NTD. Results We used RNA-Seq to compare the transcriptomic profile of three groups of embryos retrieved from SR-B1 heterozygous intercrosses: wild-type E9.5 embryos (WT), embryos lacking SR-B1 that are morphologically normal, without NTD (KO-N) and SR-B1 deficient embryos with this defect (KO-NTD). We identified over 1000 differentially expressed genes: down-regulated genes in KO-NTD embryos were enriched for functions associated to neural development, while up-regulated genes in KO-NTD embryos were enriched for functions related to lipid metabolism. Feeding pregnant dams a vitamin E-enriched diet, which prevents NTD in SR-B1 KO embryos, resulted in mRNA levels for those differentially expressed genes that were more similar to KO-N than to KO-NTD embryos. We used gene regulatory network analysis to identify putative transcriptional regulators driving the different embryonic expression profiles, and identified a regulatory circuit controlled by the androgen receptor that may contribute to this dichotomous expression profile in SR-B1 embryos. Supporting this possibility, the expression level of the androgen receptor correlated strongly with the expression of several genes involved in neural development and lipid metabolism. Conclusions Our analysis shows that normal and defective embryos lacking SR-B1 have divergent expression profiles, explained by a defined set of transcription factors that may explain their divergent phenotype. We propose that distinct expression profiles may be relevant during early development to support embryonic nutrition and neural tube closure.
APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints
The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD–astrocyte cross-talk associated with β-amyloid (Aβ) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3 , compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8–transforming growth factor-β (TGFβ) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d , in mice. Deletion of Inpp5d in microglia restores MGnD–astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4–ITGB8–TGFβ pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8–TGFβ signaling provides a promising therapeutic intervention for AD. The APOE4 allele is a major genetic risk factor for the development of late-onset Alzheimer’s disease (AD). In this manuscript, Butovsky and colleagues suggest that APOE4 impairs the microglial response in AD by inducing TGFβ-mediated checkpoints.
A new genetic strategy for targeting microglia in development and disease
As the resident macrophages of the brain and spinal cord, microglia are crucial for the phagocytosis of infectious agents, apoptotic cells and synapses. During brain injury or infection, bone-marrow derived macrophages invade neural tissue, making it difficult to distinguish between invading macrophages and resident microglia. In addition to circulation-derived monocytes, other non-microglial central nervous system (CNS) macrophage subtypes include border-associated meningeal, perivascular and choroid plexus macrophages. Using immunofluorescent labeling, flow cytometry and Cre-dependent ribosomal immunoprecipitations, we describe P2ry12-CreER , a new tool for the genetic targeting of microglia. We use this new tool to track microglia during embryonic development and in the context of ischemic injury and neuroinflammation. Because of the specificity and robustness of microglial recombination with P2ry12-CreER , we believe that this new mouse line will be particularly useful for future studies of microglial function in development and disease.