Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Santen, Gijs W. E."
Sort by:
Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders
Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B +/− Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B -haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome. Mutations in the ARID1B subunit of the BAF chromatin remodeling complex are associated with the neurodevelopmental Coffin-Siris syndrome. Here the authors reveal that there is a transition from ARID1A-containing complexes to ARID1B during cranial neural crest cell differentiation that is impaired in Coffin-Siris patient-derived cells, which is important for exit from pluripotency.
Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature
Background We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. Results Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This “episignature” was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. Conclusions We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis.
Morphine Glucuronidation in Preterm Neonates, Infants and Children Younger than 3 Years
Background and objective A considerable amount of drug use in children is still unlicensed or off-label. In order to derive rational dosing schemes, the influence of aging on glucuronidation capacity in newborns, including preterms, infants and children under the age of 3 years was studied using morphine and its major metabolites as a model drug. Methods A population pharmacokinetic model was developed with the nonlinear mixed-effects modelling software NONMEM® V, on the basis of 2159 concentrations of morphine and its glucuronides from 248 infants receiving intravenous morphine ranging in bodyweight from 500 g to 18 kg (median 2.8 kg). The model was internally validated using normalized prediction distribution errors. Results Formation clearances of morphine to its glucuronides and elimination clearances of the glucuronides were found to be primarily influenced by bodyweight, which was parameterized using an allometric equation with an estimated exponential scaling factor of 1.44. Additionally, a postnatal age of less than 10 days was identified as a covariate for formation clearance to the glucuronides, independent of birthweight or postmenstrual age. Distribution volumes scaled linearly with bodyweight. Conclusions Model-based simulations show that in newborns, including preterms, infants and children under the age of 3 years, a loading dose in µg/kg and a maintenance dose expressed in µg/kg 1.5 /h, with a 50% reduction of the maintenance dose in newborns younger than 10 days, results in a narrow range of morphine and metabolite serum concentrations throughout the studied age range. Future pharmacodynamic investigations are needed to reveal target concentrations in this population, after which final dosing recommendations can be made.
Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling. DNA does not just float freely inside our cells. Instead, it is wound around proteins called histones and packaged tidily into a form called chromatin. This packaging allows genes to be switched on or off by making it easier or harder to access different stretches of the genetic code. A group of proteins called the SWI/SNF chromatin-remodeling complex are responsible for the packing and unpacking of DNA during development, dictating the fate of thousands of genes. Mutations that affect one component of this complex, a protein known ARID1B, are associated with a rare genetic condition called Coffin-Siris syndrome, and may also have a role to play in autism spectrum disorders and intellectual disability. However, there were previously no animal models that can be used to study this mutation in the laboratory. Celen, Chuang et al. have now genetically modified mice to remove one of their two copies of the gene that encodes the mouse equivalent of ARID1B. This change replicates the mutation that is most commonly seen in people with Coffin-Siris syndrome. Celen, Chuang et al. report that the mutant mice with just one working copy of the gene showed many features also seen in Coffin-Siris syndrome, including a smaller size and weaker muscles. The mutant mice also repeated certain behaviors, like grooming themselves, and showed unusual interactions with other mice. Further tests showed that the mutant mice had lower than expected levels of growth hormone in their blood. The mice were then treated with growth hormone supplements to find out if this could reverse any of their symptoms. Indeed, this treatment made the mice larger and stronger, but did not change their behavior. Some doctors are already treating people with Coffin-Siris syndrome with growth hormone, and these new findings suggest that this treatment counteracts defects caused directly by the mutation affecting ARID1B. Moreover, this mouse model will allow the role of ARID1B to be investigated further in the laboratory, and could be used as a tool to discover, develop and test new treatments for Coffin-Siris syndrome.
Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2
Silvère van der Maarel, Stephen Tapscott, Daniel Miller and colleagues show that digenic inheritance of a mutation in SMCHD1 and a chromosome 4 haplotype permissive for DUX4 mRNA polyadenylation causes fascioscapulohumeral dystrophy type 2. Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.
Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling
Michael Duchen, Francesco Muntoni, Eamonn Sheridan and colleagues show that loss-of-function mutations in MICU1 cause a recessive disorder characterized by proximal myopathy, learning difficulties and progressive extrapyramidal motor deficits. The mutations alter mitochondrial calcium homeostasis, leading to mitochondrial damage and dysfunction. Mitochondrial Ca 2+ uptake has key roles in cell life and death. Physiological Ca 2+ signaling regulates aerobic metabolism, whereas pathological Ca 2+ overload triggers cell death. Mitochondrial Ca 2+ uptake is mediated by the Ca 2+ uniporter complex in the inner mitochondrial membrane 1 , 2 , which comprises MCU, a Ca 2+ -selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca 2+ uptake at low cytosolic Ca 2+ concentrations was increased, and cytosolic Ca 2+ signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy 3 and the core myopathies 4 involves abnormal mitochondrial Ca 2+ handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca 2+ signaling, demonstrating the crucial role of mitochondrial Ca 2+ uptake in humans.
Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome
Gijs Santen and colleagues report mutations in the SWI/SNF subunit gene ARID1B in Coffin-Siris syndrome. We identified de novo truncating mutations in ARID1B in three individuals with Coffin-Siris syndrome (CSS) by exome sequencing. Array-based copy-number variation (CNV) analysis in 2,000 individuals with intellectual disability revealed deletions encompassing ARID1B in 3 subjects with phenotypes partially overlapping that of CSS. Taken together with published data, these results indicate that haploinsufficiency of the ARID1B gene, which encodes an epigenetic modifier of chromatin structure, is an important cause of CSS and is potentially a common cause of intellectual disability and speech impairment.
Trio-based whole exome sequencing in patients with suspected sporadic inborn errors of immunity: A retrospective cohort study
variants (DNVs) are currently not routinely evaluated as part of diagnostic whole exome sequencing (WES) analysis in patients with suspected inborn errors of immunity (IEI). This study explored the potential added value of systematic assessment of DNVs in a retrospective cohort of 123 patients with a suspected sporadic IEI that underwent patient-parent trio-based WES. A (likely) molecular diagnosis for (part) of the immunological phenotype was achieved in 12 patients with the diagnostic IEI WES gene panel. Systematic evaluation of rare, non-synonymous DNVs in coding or splice site regions led to the identification of 14 candidate DNVs in genes with an annotated immune function. DNVs were found in IEI genes ( and ) and in potentially novel candidate genes, including , , and . The canonical splice site DNV was shown to lead to defective RNA splicing, increased NF-κB p65 signalling, and elevated IL-1β production in primary immune cells extracted from the patient with autoinflammatory disease. Our findings in this retrospective cohort study advocate the implementation of trio-based sequencing in routine diagnostics of patients with sporadic IEI. Furthermore, we provide functional evidence supporting a causal role for loss-of-function mutations in autoinflammatory disease. This research was supported by grants from the European Union, ZonMW and the Radboud Institute for Molecular Life Sciences.
Prevalence of comorbidities in individuals with neurodevelopmental disorders from the aggregated phenomics data of 51,227 pediatric individuals
The prevalence of comorbidities in individuals with neurodevelopmental disorders (NDDs) is not well understood, yet these are important for accurate diagnosis and prognosis in routine care and for characterizing the clinical spectrum of NDD syndromes. We thus developed PhenomAD-NDD, an aggregated database containing the comorbid phenotypic data of 51,227 individuals with NDD, all harmonized into Human Phenotype Ontology (HPO), with in total 3,054 unique HPO terms. We demonstrate that almost all congenital anomalies are more prevalent in the NDD population than in the general population, and the NDD baseline prevalence allows for an approximation of the enrichment of symptoms. For example, such analyses of 33 genetic NDDs show that 32% of enriched phenotypes are currently not reported in the clinical synopsis in the Online Mendelian Inheritance in Man (OMIM). PhenomAD-NDD is open to all via a visualization online tool and allows us to determine the enrichment of symptoms in NDD. Data from pediatric populations with neurodevelopmental disorders, obtained through a combinatorial strategy of literature review scoping and in-patient appointments, were used to construct a Phenomics Aggregation Database (PhenomAD-NDD) that can aid clinical diagnosis of comorbidities.