Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Santhakumar, Vijayaratnam"
Sort by:
Discovery of Nedd4 auto-ubiquitination inhibitors
E3 ubiquitin ligases are critical to the protein degradation pathway by catalyzing the final step in protein ubiquitination by mediating ubiquitin transfer from E2 enzymes to target proteins. Nedd4 is a HECT domain-containing E3 ubiquitin ligase with a wide range of protein targets, the dysregulation of which has been implicated in myriad pathologies, including cancer and Parkinson's disease. Towards the discovery of compounds disrupting the auto-ubiquitination activity of Nedd4, we developed and optimized a TR-FRET assay for high-throughput screening. Through selective screening of a library of potentially covalent compounds, compounds 25 and 81 demonstrated apparent IC 50 values of 52 µM and 31 µM, respectively. Tandem mass spectrometry (MS/MS) analysis confirmed that 25 and 81 were covalently bound to Nedd4 cysteine residues (Cys182 and Cys867). In addition, 81 also adducted to Cys627. Auto-ubiquitination assays of Nedd4 mutants featuring alanine substitutions for each of these cysteines suggested that the mode of inhibition of these compounds occurs through blocking the catalytic Cys867. The discovery of these inhibitors could enable the development of therapeutics for various diseases caused by Nedd4 E3 ligase dysregulation.
The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition
Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound’s interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue. Structural and biophysical characterization of a small molecule binding to Cbl-b E3 ligase reveals an intramolecular glue mechanism locking the protein in an inactive state.
Crystal structures of DCAF1-PROTAC-WDR5 ternary complexes provide insight into DCAF1 substrate specificity
Proteolysis-targeting chimeras (PROTACs) have been explored for the degradation of drug targets for more than two decades. However, only a handful of E3 ligase substrate receptors have been efficiently used. Downregulation and mutation of these receptors would reduce the effectiveness of such PROTACs. We recently developed potent ligands for DCAF1, a substrate receptor of EDVP and CUL4 E3 ligases. Here, we focus on DCAF1 toward the development of PROTACs for WDR5, a drug target in various cancers. We report four DCAF1-based PROTACs with endogenous and exogenous WDR5 degradation effects and high-resolution crystal structures of the ternary complexes of DCAF1-PROTAC-WDR5. The structures reveal detailed insights into the interaction of DCAF1 with various WDR5-PROTACs, indicating a significant role of DCAF1 loops in providing needed surface plasticity, and reflecting the mechanism by which DCAF1 functions as a substrate receptor for E3 ligases with diverse sets of substrates. The authors show that DCAF1, a substrate receptor of CUL4 and EDVP E3 ligases, can be recruited by PROTACs to degrade the cancer drug target, WDR5. They also report the crystal structures of PROTAC ternary complexes that reveal a significant role for loops in DCAF1 substrate recognition, a potential mechanism behind the diverse substrate specificity of DCAF1.
The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity
Editorial Summary SUV4-20 members mediate the di- and trimethylation of lysine 20 on histone H4. A chemical screen led to the identification of A-196 as a potent and selective inhibitor of SUV4-20 that decreases H4K20 methylation and alters DNA damage response. Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.
Probing the CRL4 DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons
Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
Probing the CRL4DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons
Abstract Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4–RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1–DCAF12–MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
Probing the CRL4.sup.DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons
Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 A cryo-EM structure of DDB1-DCAF12- MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
OICR-41103 as a chemical probe for the DCAF1 WD40 domain
Human DCAF1 is a multidomain protein that plays a critical role in protein homeostasis. Its WDR domain functions as a substrate recruitment module for RING-type CRL4 and HECT family EDVP E3 ubiquitin ligases, enabling the ubiquitination and proteasomal degradation of specific substrates. DCAF1’s activity has been implicated in cell proliferation and is documented to promote tumorigenesis. Additionally, the DCAF1 WDR domain is hijacked by lentiviral accessory proteins to induce the degradation of host antiviral factors, such as SAMHD1 and UNG2. These diverse roles make DCAF1 an attractive target for therapeutic development in oncology and antiviral strategies. It is also a promising candidate for use in targeted protein degradation. We previously reported a novel ligand, OICR-8268, that targets the DCAF1 WDR domain. In this study, we present the development of OICR-41103, a potent, selective, and cell-active small molecule chemical probe for DCAF1, derived from OICR-8268. The co-crystal structure of the DCAF1-OICR-41103 complex reveals the ligand’s binding mode within the WDR central pocket, demonstrating its potential for PROTAC design and development. Notably, OICR-41103 effectively displaces the lentiviral Vpr protein from DCAF1 in both biochemical and cellular settings, highlighting its potential for the development of HIV therapeutics. OICR-41103 is a potent, selective probe targeting the DCAF1 WDR domain and displacing viral Vpr protein. It enables new opportunities in cancer research, antiviral therapy, and targeted protein degradation via PROTACs.
Enantioselective Protein Affinity Selection Mass Spectrometry (E-ASMS)
We report an enantioselective protein affinity selection mass spectrometry screening approach (E-ASMS) that enables the detection of weak binders, informs on selectivity, and generates orthogonal confirmation of binding. After method development with control proteins, we screened 31 human proteins against a designed library of 8,210 chiral compounds. 16 binders to 12 targets, including many proteins predicted to be \"challenging to ligand\", were discovered and confirmed in orthogonal biophysical assays. 7 binders to 6 targets bound in an enantioselective manner, with values ranging from 3 to 20 μM. Binders for four targets (DDB1, WDR91, WDR55, and HAT1) were selected for in-depth characterization using X-ray crystallography. In all four cases, the mechanism for enantioselectivity was readily explained. We conclude E-ASMS can be used to identify and characterize selective and weakly-binding ligands for novel protein targets with unprecedented throughput and sensitivity.
Probing the DCAF12 interactions with MAGEA3 and CCT5 C-terminal degrons
DCAF12 is the substrate recognition component of the CRL4 E3 ligase complex that can recognize C-terminal double-glutamic acid degrons to promote degradation of its cognate substrates via the ubiquitin proteasome system. MAGEA3 and CCT5 proteins were reported to be cellular targets of DCAF12. To further characterize the DCAF12 interactions with both MAGEA3 and CCT5, we developed a suite of biophysical and a proximity-based cellular NanoBRET assays showing that both MAGEA3 and CCT5 C-terminal degron peptides interact with DCAF12 in nanomolar affinity in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DCAF12-DDB1-MAGEA3 complex revealing the key DCAF12 residues involved in C-terminal degron recognition and binding. Our study provides new tools and resources to enable the discovery of small molecule handles targeting the WDR domain of DCAF12 for future PROTAC design and development.