Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
22
result(s) for
"Santhekadur, Prasanna K."
Sort by:
The PPAR α/γ Agonist Saroglitazar Improves Insulin Resistance and Steatohepatitis in a Diet Induced Animal Model of Nonalcoholic Fatty Liver Disease
2020
Insulin resistance and hepatic lipid accumulation constitute the metabolic underpinning of nonalcoholic steatohepatitis (NASH). We tested the hypothesis that saroglitazar, a PPAR α/γ agonist would improve NASH in the diet-induced animal model of NAFLD. Mice received chow diet and normal water (CDNW) or high fat western diet and ad lib sugar water (WDSW). After 12 weeks, WDSW fed mice were randomized to receive (1) WDSW alone, (2) WDSW + vehicle, (3) WDSW + pioglitazone or (4) WDSW + saroglitazar for an additional 12 weeks. Compared to mice on WDSW and vehicle controls, mice receiving WDSW + saroglitazar had lower weight, lower HOMA-IR, triglycerides, total cholesterol, and ALT. Saroglitazar improved steatosis, lobular inflammation, hepatocellular ballooning and fibrosis stage. NASH resolved in all mice receiving saroglitazar. These effects were at par with or superior to pioglitazone. Molecular analyses confirmed target engagement and reduced oxidative stress, unfolded protein response and fibrogenic signaling. Transcriptomic analysis further confirmed increased PPAR-target expression and an anti-inflammatory effect with saroglitazar. Lipidomic analyses demonstrated that saroglitazar also reduced triglycerides, diglycerides, sphingomyelins and ceramides. These preclinical data provide a strong rationale for developing saroglitazar for the treatment of NASH in humans.
Journal Article
Extracellular Vesicles as Inflammatory Drivers in NAFLD
by
Santhekadur, Prasanna K.
,
Suresh, Diwakar
,
Kumar, Divya P.
in
Apoptosis
,
Body fat
,
Cell death
2021
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease in most parts of the world affecting one-third of the western population and a growing cause for end-stage liver diseases such as hepatocellular carcinoma (HCC). Majorly driven by obesity and diabetes mellitus, NAFLD is more of a multifactorial disease affected by extra-hepatic organ crosstalk. Non-alcoholic fatty liver (NAFL) progressed to non-alcoholic steatohepatitis (NASH) predisposes multiple complications such as fibrosis, cirrhosis, and HCC. Although the complete pathogenic mechanisms of this disease are not understood, inflammation is considered as a key driver to the onset of NASH. Lipotoxicity, inflammatory cytokines, chemokines, and intestinal dysbiosis trigger both hepatic and systemic inflammatory cascades simultaneously activating immune responses. Over a few years, extracellular vesicles studied extensively concerning the pathobiology of NAFLD indicated it as a key modulator in the setting of immune-mediated inflammation. Exosomes and microvesicles, the two main types of extracellular vesicles are secreted by an array of most mammalian cells, which are involved mainly in cell-cell communication that are unique to cell type. Various bioactive cargoes containing extracellular vesicles derived from both hepatic and extrahepatic milieu showed critical implications in driving steatosis to NASH reaffirming inflammation as the primary contributor to the whole process. In this mini-review, we provide brief insights into the inflammatory mediators of NASH with special emphasis on extracellular vesicles that acts as drivers of inflammation in NAFLD.
Journal Article
Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer
by
Das, Swadesh K.
,
Rajput, Shashi
,
Sarkar, Devanand
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Angiogenesis
2013
X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.
Journal Article
The ameliorating effect of withaferin A on high-fat diet-induced non-alcoholic fatty liver disease by acting as an LXR/FXR dual receptor activator
by
Bhat, Smitha
,
Puttahanumantharayappa, Lakshana D.
,
Sannappa Gowda, Nirmala G.
in
Albinism
,
Animal models
,
Animals
2023
Introduction: Non-alcoholic fatty liver disease (NAFLD) incidence has been rapidly increasing, and it has emerged as one of the major diseases of the modern world. NAFLD constitutes a simple fatty liver to chronic non-alcoholic steatohepatitis (NASH), which often leads to liver fibrosis or cirrhosis, a serious health condition with limited treatment options. Many a time, NAFLD progresses to fatal hepatocellular carcinoma (HCC). Nuclear receptors (NRs), such as liver X receptor-α (LXR-α) and closely associated farnesoid X receptor (FXR), are ligand-inducible transcription factors that regulate various metabolism-associated gene expressions and repression and play a major role in controlling the pathophysiology of the human liver. Withaferin A is a multifaceted and potent natural dietary compound with huge beneficial properties and plays a vital role as an anti-inflammatory molecule. Methods: In vivo : Swill albino mice were fed with western diet and sugar water (WDSW) for 12, 16, and 20 weeks with suitable controls. Post necropsy, liver enzymes (AST, ALT, and ALP) and lipid profile were measured by commercially available kits using a semi-auto analyzer in serum samples. Liver histology was assessed using H&E and MTS stains to check the inflammation and fibrosis, respectively, using paraffin-embedded sections and mRNA expressions of these markers were measured using qRT-PCR method. TGF-β1 levels in serum samples were quantified by ELISA. In vitro : Steatosis was induced in HepG2 and Huh7 cells using free fatty acids [Sodium Palmitate (SP) and Oleate (OA)]. After induction, the cells were treated with Withaferin A in dose-dependent manner (1, 2.5, and 5 μM, respectively). In vitro steatosis was confirmed by Oil-Red-O staining. Molecular Docking: Studies were conducted using Auto Dock Vina software to check the binding affinity of Withaferin-A to LXR-α and FXR. Results: We explored the dual receptor-activating nature of Withaferin A using docking studies, which potently improves high-fat diet-induced NAFLD in mice and suppresses diet-induced hepatic inflammation and liver fibrosis via LXR/FXR. Our in vitro studies also indicated that Withaferin A inhibits lipid droplet accumulation in sodium palmitate and oleate-treated HepG2 and Huh7 cells, which may occur through LXR-α and FXR-mediated signaling pathways. Withaferin A is a known inhibitor of NF-κB-mediated inflammation. Intriguingly, both LXR-α and FXR activation inhibits inflammation and fibrosis by negatively regulating NF-κB. Additionally, Withaferin A treatment significantly inhibited TGF-β-induced gene expression, which contributes to reduced hepatic fibrosis. Discussion: Thus, the LXR/ FXR dual receptor activator Withaferin A improves both NAFLD-associated liver inflammation and fibrosis in mouse models and under in vitro conditions, which makes Withaferin A a possibly potent pharmacological and therapeutic agent for the treatment of diet-induced NAFLD.
Journal Article
Editorial: Congruities between cancer and infectious diseases: Lessons to be learned from these distinct yet analogous fields
2022
Dolatabadi et al. showed the presence of intracellular highly adherent-invasive Escherichia coli among different stages of the disease, family background, and history in treated colorectal cancer patients in Iran. Another study by Wang et al. also showed how fucoxanthin prevents breast cancer growth and metastasis by stopping circulating tumor cell adhesion and transendothelial migration. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construeds as a potential conflict of interest.
Journal Article
Green jackfruit flour ameliorates MASH and development of HCC via the AMPK and MAPK signaling pathways in experimental model systems
by
Varughese, Thomas
,
Megha
,
Chidambaram, Saravana Babu
in
692/4020/4021
,
692/4020/4021/1607
,
AMP-activated protein kinase
2025
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a serious public health concern. Given the paucity of approved therapeutic strategies for this lifestyle disorder, dietary interventions may prove effective. We evaluated the mechanisms of how green jackfruit flour (JF) ameliorates metabolic-dysfunction-associated steatohepatitis (MASH) and halts the progression to hepatocellular carcinoma (HCC). The study used murine models of MASH and MASH-HCC that closely mimic human MASLD. C57Bl/6 male mice were fed with chow or western diet with normal or sugar water for 12 weeks, then randomized to receive either 5 kcal% green jackfruit flour (JF) or an equal volume of placebo flour (PB). JF significantly reduced body weight, liver injury, and insulin resistance, and alleviated obesity, steatosis, inflammation, fibrosis, and tumor development in WDSW or WDSW/CCl
4
mice compared to placebo. Furthermore, JF activated AMPK (AMP-activated protein kinase) and inhibited MAPK (mitogen-activated protein kinase) signaling pathways in MASH and MASH-HCC models, respectively. Sodium propionate treatment, the primary short-chain fatty acid entering the liver from JF’s soluble fiber microbial fermentation, further supported these mechanistic insights. Hence, our findings present strong evidence of JF’s therapeutic potential in attenuating MASH and MASH-HCC, warranting further investigation of JF’s efficacy as a dietary intervention in clinical trials.
Journal Article
TACE inhibition: a promising therapeutic intervention against AATF‐mediated steatohepatitis to hepatocarcinogenesis
by
Satish, Suchitha
,
Suresh, Diwakar
,
Vishwanath, Prashant M.
in
ADAM17 Protein - antagonists & inhibitors
,
ADAM17 Protein - genetics
,
ADAM17 Protein - metabolism
2024
Metabolic dysfunction‐associated steatohepatitis‐driven hepatocellular carcinoma (MASH‐HCC) is a global clinical challenge for which there is a limited understanding of disease pathogenesis and a subsequent lack of therapeutic interventions. We previously identified that tumor necrosis factor‐alpha (TNF‐α) upregulated apoptosis antagonizing transcription factor (AATF) in MASH. Here, we investigated the effect of TNF‐α converting enzyme (TACE) inhibition as a promising targeted therapy against AATF‐mediated steatohepatitis to hepatocarcinogenesis. A preclinical murine model that recapitulates human MASH‐HCC was used in the study. C57Bl/6 mice were fed with chow diet normal water (CD) or western diet sugar water (WD) along with a low dose of carbon tetrachloride (CCl4; 0.2 μL·g−1, weekly) for 24 weeks. TACE activity, TNF‐α levels, and AATF expression were measured. The mice were treated with the TACE inhibitor Marimastat for 12 weeks, followed by analyses of liver injury, fibrosis, inflammation, and oncogenic signaling. In vitro experiments using stable clones of AATF control and AATF knockdown were also conducted. We found that AATF expression was upregulated in WD/CCl4 mice, which developed severe MASH at 12 weeks and advanced fibrosis with HCC at 24 weeks. WD/CCl4 mice showed increased TACE activity with reduced hepatic expression of sirtuin 1 (Sirt1) and tissue inhibitor of metalloproteinase 3 (Timp3). The involvement of the SIRT1/TIMP3/TACE axis was confirmed by the release of TNF‐α, which upregulated AATF, a key molecular driver of MASH‐HCC. Interestingly, TACE inhibition by Marimastat reduced liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Furthermore, Marimastat inhibited the activation of JNK, ERK1/2, and AKT, which are key regulators of tumorigenesis in WD/CCl4 mice and in AATF control cells, but had no effect on AATF knockdown cells. This study shows that TACE inhibition prevents AATF‐mediated inflammation, fibrosis, and oncogenesis in MASH‐HCC, offering a potential target for therapeutic intervention. The SIRT1/TIMP3/TACE axis is involved in the release of TNF‐α, which upregulates AATF, a key molecular driver of MASH‐HCC. This study shows that inhibition of TNF‐α converting enzyme (TACE) by Marimastat reduces liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Thus, TACE inhibition represents a promising targeted therapy against AATF‐mediated steatohepatitis and hepatocarcinogenesis.
Journal Article
The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease
2017
A longitudinal molecular model of the development and progression of nonalcoholic fatty liver disease (NAFLD) over time is lacking. We have recently validated a high fat/sugar water-induced animal (an isogenic strain of C57BL/6 J:129S1/SvImJ mice) model of NAFLD that closely mimics most aspects of human disease. The hepatic transcriptome of such mice with fatty liver (8 weeks), steatohepatitis with early fibrosis (16–24 weeks) and advanced fibrosis (52 weeks) after initiation of the diet was evaluated and compared to mice on chow diet. Fatty liver development was associated with transcriptional activation of lipogenesis, FXR-RXR, PPAR-α mediated lipid oxidation and oxidative stress pathways. With progression to steatohepatitis, metabolic pathway activation persisted with additional activation of IL-1/inhibition of RXR, granulocyte diapedesis/adhesion, Fc macrophage activation, prothrombin activation and hepatic stellate cell activation. Progression to advanced fibrosis was associated with dampening of metabolic, oxidative stress and cell stress related pathway activation but with further Fc macrophage activation, cell death and turnover and activation of cancer-related networks. The molecular progression of NAFLD involves a metabolic perturbation which triggers subsequent cell stress and inflammation driving cell death and turnover. Over time, inflammation and fibrogenic pathways become dominant while in advanced disease an inflammatory-oncogenic profile dominates.
Journal Article
COVID-19 and gastrointestinal system: A brief review
by
Pola, Akhil
,
Santhekadur, Prasanna K
,
Murthy, Karnam S
in
ACE2
,
Angiotensin
,
Angiotensin-converting enzyme 2
2021
COVID-19 is a recent pandemic that is still a major health problem of modern times and already more than 17.5 lakhs people succumbed to this deadly disease. This disease is caused by novel coronavirus which is named SARS-COV-2 by the International Committee on Taxonomy of Viruses. This virus originated from Wuhan city in Hubei province of China in December 2019 and within a short period spread across the many countries in the globe. There are a lot of basic as well as clinical research is going on to study the mode of transmission and the mechanism of action of SARS-COV-2 infection and its therapeutics. SARS-COV-2 is not only known to infect lungs, but it also infects other organs in the human body including the gastrointestinal (GI) tract, the liver, and the pancreas via the angiotensin-converting enzyme (ACE) 2, an important component of the renin-angiotensin system. In this short review, we are mainly discussing the mode of SARS-COV-2 transmission, physiological counterbalancing roles of ACE2 and ACE and the tissue patterns of ACE2 expression, and the overall effect of COVID19 on human gastrointestinal System. Therefore, this review sheds light on the possible mechanism of SARS-COV-2 infection in the GI system and its pathological symptoms raising a potential possibility of GI tract acting as a secondary site for SARS-CoV-2 tropism and infection. Finally, future studies to understand the fecal-oral transmission of the virus and the correlation of viral load and severity of GI symptoms are proposed to gain knowledge of the GI symptoms in COVID-19 to aid in early diagnosis and prognosis.
Journal Article
Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling
by
Rajasekaran, Devaraja
,
Mukhopadhyay, Nitai D.
,
Sarkar, Devanand
in
Angiogenesis
,
Angiotensin
,
Angiotensin II
2014
•SND1 augments AT1R receptor level by posttranscriptional regulation.•SND1 activates TGFβ signaling which promotes the epithelial–mesenchymal transition.•Migration and invasion by human hepatocellular carcinoma (HCC) cells are augmented by SND1.•A correlation is observed between SND1 and AT1R expression in HCC patients.
Staphylococcal nuclease domain containing-1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) patients and promotes tumorigenesis by human HCC cells. We now document that SND1 increases angiotensin II type 1 receptor (AT1R) levels by increasing AT1R mRNA stability. This results in activation of ERK, Smad2 and subsequently the TGFβ signaling pathway, promoting epithelial–mesenchymal transition (EMT) and migration and invasion by human HCC cells. A positive correlation was observed between SND1 and AT1R expression levels in human HCC patients. Small molecule inhibitors of SND1, alone or in combination with AT1R blockers, might be an effective therapeutic strategy for late-stage aggressive HCC.
Journal Article