Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
61
result(s) for
"Santis, Elisabetta De"
Sort by:
COVID-19 Specific Immune Markers Revealed by Single Cell Phenotypic Profiling
by
Rosati, Jessica
,
Miroballo, Mattia
,
Santis, Elisabetta De
in
Blood & organ donations
,
Coronaviruses
,
COVID-19
2021
COVID-19 is a viral infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized by a complex inflammatory process and clinical immunophenotypes. Nowadays, several alterations of immune response within the respiratory tracts as well as at the level of the peripheral blood have been well documented. Nonetheless, their effects on COVID-19-related cell heterogeneity and disease progression are less defined. Here, we performed a single-cell RNA sequencing of about 400 transcripts relevant to immune cell function including surface markers, in mononuclear cells (PBMCs) from the peripheral blood of 50 subjects, infected with SARS-CoV-2 at the diagnosis and 27 healthy blood donors as control. We found that patients with COVID-19 exhibited an increase in COVID-specific surface markers in different subsets of immune cell composition. Interestingly, the expression of cell receptors, such as IFNGR1 and CXCR4, was reduced in response to the viral infection and associated with the inhibition of the related signaling pathways and immune functions. These results highlight novel immunoreceptors, selectively expressed in COVID-19 patients, which affect the immune functionality and are correlated with clinical outcomes.
Journal Article
The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis
by
Bianco, Salvatore Daniele
,
Panelli, Patrizio
,
Padovano, Costanzo
in
631/136/818
,
631/1647/514/2254
,
631/80/86
2023
Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14
+
cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell–cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.
Journal Article
Extracellular vesicle microRNAs contribute to Notch signaling pathway in T-cell acute lymphoblastic leukemia
by
Colangelo, Tommaso
,
Panelli, Patrizio
,
Bianchi, Fabrizio
in
Acute lymphocytic leukemia
,
Amyloid Precursor Protein Secretases - genetics
,
Amyloid Precursor Protein Secretases - metabolism
2022
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conventional therapies.
Journal Article
The circadian clock circuitry modulates leukemia initiating cell activity in T-cell acute lymphoblastic leukemia
by
Carbone, Annalucia
,
Colangelo, Tommaso
,
Relogio, Angela
in
Acute lymphocytic leukemia
,
Antibiotics
,
Apoptosis
2023
Background
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression.
Methods
Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells. Patient-derived xenograft (PDXs) cell subsets were also genetically manipulated in order to assess the LIC activity modulated by the loss of biological clock in human T-ALL.
Results
We report that the disruption of the circadian clock circuitry obtained through shRNA-mediated knockdown of
CLOCK
and
BMAL1
genes negatively impacted the growth in vitro as well as the activity in vivo of LIC derived from PDXs after transplantation into immunodeficient recipient mice. Additionally, gene expression data integrated with ChIP-Seq profiles of leukemic cells revealed that the circadian clock directly promotes the expression of genes, such as
IL20RB
, crucially involved in JAK/STAT signaling, making the T-ALL cells more responsive to Interleukin 20 (IL20).
Conclusion
Taken together, our data support the concept that the biological clock drives the expression of IL20R prompting JAK/STAT signaling and promoting LIC activity in T-ALL and suggest that the selective targeting of circadian components could be therapeutically relevant for the treatment of T-ALL patients.
Journal Article
Effectiveness of Booster Dose of Anti SARS-CoV-2 BNT162b2 in Cirrhosis: Longitudinal Evaluation of Humoral and Cellular Response
2022
Background: LC has been associated with hyporesponsiveness to several vaccines. Nonetheless, no data on complete serological and B- and T-cell immune response are currently available. Aims: To assess, in comparison with healthy controls of the same age and gender, both humoral and cellular immunoresponses of patients with LC after two or three doses of the mRNA Pfizer-BioNTech vaccine against SARS-CoV-2 and to investigate clinical features associated with non-response. Material and methods: 179 patients with LC of CTP class A in 93.3% and viral etiology in 70.1% of cases were longitudinally evaluated starting from the day before the first dose to 4 weeks after the booster dose. Their antibody responses were compared to those of healthcare workers without co-morbidities. In a subgroup of 40 patients, B- and T-cell responses were also compared to controls. Results: At d31, d90 and d180 after BNT162b2 vaccine, no detectable SARS-CoV-2 IgG response was observed in 5.9%, 3.9% and 7.2% of LC patients as compared to 0 controls (p < 0.03). A delay in B-cell and lack of prompt T-cell response compared to healthcare workers was also registered. A significant correlation between antibody titers and cellular response was observed. A MELD score > 8 was the only independent predictor of poor d31 response (p = 0.028). Conclusions: Our results suggest that cirrhotic patients have a slower and in <10% suboptimal immune response to SARS-CoV-2 vaccination. Rates of breakthrough infections were comparable between cirrhotics and controls. The booster dose was critical in inducing both humoral and cellular responses comparable to controls.
Journal Article
A functional role of Ephrin type-B receptor 6 (EPHB6) in T-cell acute lymphoblastic leukemia
by
Colucci, Mattia
,
Trivieri, Nadia
,
Visioli, Alberto
in
Acute lymphoblastic leukemia
,
Apoptosis
,
Biomarkers
2023
T-cell lymphoblastic acute leukemia (T-ALL) is an aggressive blood cancer, characterized by restricted cellular subsets with enriched leukemia initiating cells (LICs). Recently, Ephrin receptors (Eph) were described to be highly expressed in cancer stem cells. Here, using public RNA-Seq datasets of human T-ALL, we reported that EphB6 was the only member within the Eph family overexpressed in over 260 samples. We also found the highest level of EphB6 in a minor cell subpopulation within bulk tumors of patient-derived xenografts, obtained through the injection of primary patient biopsy material into immunocompromised NOD-Scid/IL2Rγc
−/−
(NSG) mice. Interestingly, this EphB6 positive (EphB6+) subset showed an enriched LIC activity after in vivo transplantation into NSG mice. Additionally, gene expression data at the single-cell level of primary patients’ leukemic cells revealed that EphB6 + cells were significantly selected in minimal residual disease up to 30 days from the standard treatments and characterized by high levels of markers related to cell proliferation and poor clinical outcome, such as
CCNB1
and
KIF20A
. Taken together, our data suggest that EphB6 supports LICs’ maintenance and progression in T-ALL and, thus, targeting EphB6 + cells could be therapeutically relevant for the treatment of T-ALL patients.
Journal Article
Associations between Allelic Variants of the Human IgH 3′ Regulatory Region 1 and the Immune Response to BNT162b2 mRNA Vaccine
by
De Vincentis, Gabriella
,
Cianci, Rossella
,
Miroballo, Mattia
in
Antibodies
,
antigen-specific B cells
,
Antigens
2021
The escalation of Coronavirus disease 2019 (COVID-19) has required the development of safe and effective vaccines against the severe acute respiratory syndrome coronavirus 2-associated (SARS-CoV-2), which is the causative agent of the disease. Here, we determined the levels of antibodies, antigen-specific B cells, against a recombinant GFP-tagged SARS-CoV-2 spike (S) protein and total T and NK cell subsets in subjects up to 20 days after the injection of the BNT162b2 (Pfizer–BioNTech) vaccine using a combined approach of serological and flow cytometry analyses. In former COVID-19 patients and highly responsive individuals, a significant increase of antibody production was detected, simultaneous with an expansion of antigen-specific B cell response and the total number of NK-T cells. Additionally, through a genetic screening of a specific polymorphic region internal to the 3’ regulatory region 1 (3’RR1) of human immunoglobulin constant-gene (IgH) locus, we identified different single-nucleotide polymorphic (SNP) variants associated with either highly or lowly responsive subjects. Taken together, these results suggest that favorable genetic backgrounds and immune profiles support the progression of an effective response to BNT162b2 vaccination.
Journal Article
The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma
by
Carbone, Annalucia
,
Grieco, Antonio
,
Cela, Olga
in
biological clock
,
Biological clocks
,
cancer
2021
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Journal Article
Changes in Lymphocyte Subpopulations after Remdesivir Therapy for COVID-19: A Brief Report
by
Cianci, Rossella
,
Totti, Beatrice
,
Gasbarrini, Antonio
in
Adaptive immunity
,
Antigens
,
Antiviral drugs
2023
Remdesivir (RDV) has demonstrated clinical benefit in hospitalized COronaVIrus Disease (COVID)-19 patients. The objective of this brief report was to assess a possible correlation between RDV therapy and the variation in lymphocyte subpopulations. We retrospectively studied 43 hospitalized COVID-19 patients: 30 men and 13 women (mean age 69.3 ± 15 years); 9/43 had received RDV therapy. Six patients had no need for oxygen (severity group 0); 22 were on oxygen treatment with a fraction of inspired oxygen (FiO2) ≤ 50% (group 1); 7 on not-invasive ventilation (group 2); 3 on invasive mechanical ventilation (group 3); and 5 had died (group 4). Cytofluorimetric assessment of lymphocyte subpopulations showed substantial changes after RDV therapy: B lymphocytes and plasmablasts were significantly increased (p = 0.002 and p = 0.08, respectively). Cytotoxic T lymphocytes showed a robust reduction (p = 0.008). No changes were observed in CD4+-T cells and natural killers (NKs). There was a significant reduction in regulatory T cells (Tregs) (p = 0.02) and a significant increase in circulating monocytes (p = 0.03). Stratifying by disease severity, after RDV therapy, patients with severity 0–2 had significantly higher B lymphocyte and monocyte counts and lower memory and effector cytotoxic T cell counts. Instead, patients with severity 3–4 had significantly higher plasmablast and lower memory T cell counts. No significant differences for CD4+-T cells, Tregs, and NKs were observed. Our brief report showed substantial changes in the lymphocyte subpopulations analyzed between patients who did not receive RDV therapy and those after RDV treatment. Despite the small sample size, due to the retrospective nature of this brief report, the substantial changes in lymphocyte subpopulations reported could lead to speculation on the role of RDV treatment both on immune responses against the virus and on the possible downregulation of the cytokine storm observed in patients with more severe disease.
Journal Article
Nutritional Keys for Intestinal Barrier Modulation
by
Cavalcanti, Elisabetta
,
Chieppa, Marcello
,
Mastronardi, Mauro
in
Antigens
,
Dendritic cells
,
Dietary intake
2015
The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier.
Journal Article