Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Sarkleti, Valentin"
Sort by:
Potential of Apple Vision Pro for Accurate Tree Diameter Measurements in Forests
by
Witzmann, Sarah
,
Stampfer, Karl
,
Kühmaier, Martin
in
Apple Vision Pro
,
Apples
,
Applications programs
2025
The determination of diameter at breast height (DBH) is critical in forestry, serving as a key metric for deriving various parameters, including tree volume. Light Detection and Ranging (LiDAR) technology has been increasingly employed in forest inventories, and the development of cost-effective, user-friendly smartphone and tablet applications (apps) has expanded its broader use. Among these are augmented reality (AR) apps, which have already been tested on mobile devices for their accuracy in measuring forest attributes. In February 2024, Apple introduced the Mixed-Reality Interface (MRITF) via the Apple Vision Pro (AVP), offering sensor capabilities for field data collection. In this study, two apps using the AVP were tested for DBH measurement on 182 trees across 22 sample plots in a near-natural forest, against caliper-based reference measurements. Compared with the reference measurements, both apps exhibited a slight underestimation bias of −1.00 cm and −1.07 cm, and the root-mean-square error (RMSE) was 3.14 cm and 2.34 cm, respectively. The coefficient of determination (R2) between the reference data and the measurements obtained by the two apps was 0.959 and 0.978. The AVP demonstrated its potential as a reliable field tool for DBH measurement, performing consistently across varying terrain.
Journal Article
Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning
by
Witzmann, Sarah
,
Ritter, Tim
,
Tockner, Andreas
in
Airborne lasers
,
Algorithms
,
Decision making
2025
The presence of sufficient natural regeneration in mature forests is regarded as a pivotal criterion for their future stability, ensuring seamless reforestation following final harvesting operations or forest calamities. Consequently, forest regeneration is typically quantified as part of forest inventories to monitor its occurrence and development over time. Light detection and ranging (LiDAR) technology, particularly ground-based LiDAR, has emerged as a powerful tool for assessing typical forest inventory parameters, providing high-resolution, three-dimensional data on the forest structure. Therefore, it is logical to attempt a LiDAR-based quantification of forest regeneration, which could greatly enhance area-wide monitoring, further supporting sustainable forest management through data-driven decision making. However, examples in the literature are relatively sparse, with most relevant studies focusing on an indirect quantification of understory density from airborne LiDAR data (ALS). The objective of this study is to develop an accurate and reliable method for estimating regeneration coverage from data obtained through personal laser scanning (PLS). To this end, 19 forest inventory plots were scanned with both a personal and a high-resolution terrestrial laser scanner (TLS) for reference purposes. The voxelated point clouds obtained from the personal laser scanner were converted into raster images, providing either the canopy height, the total number of filled voxels (containing at least one LiDAR point), or the ratio of filled voxels to the total number of voxels. Local maxima in these raster images, assumed to be likely to contain tree saplings, were then used as seed points for a raster-based tree segmentation, which was employed to derive the final regeneration coverage estimate. The results showed that the estimates differed from the reference in a range of approximately −10 to +10 percentage points, with an average deviation of around 0 percentage points. In contrast, visually estimated regeneration coverages on the same forest plots deviated from the reference by between −20 and +30 percentage points, approximately −2 percentage points on average. These findings highlight the potential of PLS data for automated forest regeneration quantification, which could be further expanded to include a broader range of data collected during LiDAR-based forest inventory campaigns.
Journal Article