Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Sarojini, B Balan"
Sort by:
Observed rainfall changes in the past century (1901-2019) over the wettest place on Earth
Changes in rainfall affect drinking water, river and surface runoff, soil moisture, groundwater reserve, electricity generation, agriculture production and ultimately the economy of a country. Trends in rainfall, therefore, are important for examining the impact of climate change on water resources for its planning and management. Here, as analysed from 119 years of rainfall measurements at 16 different rain gauge stations across northeast India, a significant change in the rainfall pattern is evident after the year 1973, with a decreasing trend in rainfall of about 0.42 ± 0.024 mm dec−1. The wettest place of the world has shifted from Cherrapunji (CHE) to Mawsynram (MAW) (separated by 15 km) in recent decades, consistent with long-term rainfall changes in the region. The annual mean accumulated rainfall was about 12 550 mm at MAW and 11 963 mm at CHE for the period 1989-2010, as deduced from the available measurements at MAW. The changes in the Indian Ocean temperature have a profound effect on the rainfall in the region, and the contribution from the Arabian Sea temperature and moisture is remarkable in this respect, as analysed with a multivariate regression procedure for the period 1973-2019. The changes in land cover are another important aspect of this shift in rainfall pattern, as we find a noticeable reduction in vegetation area in northeast India in the past two decades, implying the human influence on recent climate change.
On the Treatment of Soil Water Stress in GCM Simulations of Vegetation Physiology
Current land surface schemes in weather and climate models make use of the so-called coupled photosynthesis–stomatal conductance ( A–g s ) models of plant function to determine the surface fluxes that govern the terrestrial energy, water and carbon budgets. Plant physiology is controlled by many environmental factors, and a number of complex feedbacks are involved, but soil moisture control on root water uptake is primary, particularly in sub-tropical to temperate ecosystems. Land surface models represent plant water stress in different ways, but most implement a water stress factor, β , which ranges linearly (more recently also curvilinearly) between β = 1 for unstressed vegetation and β = 0 at the wilting point, expressed in terms of volumetric water content ( θ ).   β is most commonly used to either limit A or g s , and hence carbon and water fluxes, and a pertinent research question is whether these treatments are in fact interchangeable. Following Egea et al. (Agricultural and Forest Meteorology, 2011, 151 (10), 1,370–1,384) and Verhoef et al. (Agricultural and Forest Meteorology, 2014, 191, 22–32), we have implemented new β treatments, reflecting higher levels of biophysical complexity in a state-of-the-art LSM, Joint UK Land Environment Simulator, by allowing root zone soil moisture to limit plant function non-linearly and via individual routes (carbon assimilation, stomatal conductance, or mesophyll conductance) as well as any (non-linear) combinations thereof. The treatment of β does matter to the prediction of water and carbon fluxes: this study demonstrates that it represents a key structural uncertainty in contemporary LSMs, in terms of predictions of gross primary productivity, energy fluxes and soil moisture evolution, both in terms of climate means and response to a number of European droughts, including the 2003 heat wave. Treatments allowing ß to act on vegetation fluxes via stomatal and mesophyll routes are able to simulate the spatiotemporal variability in water use efficiency with higher fidelity during the growing season; they also support a broader range of ecosystem responses, e.g., those observed in regions that are radiation limited or water limited. We conclude that current practice in weather and climate modelling is inconsistent, as well as too simplistic, failing to credibly simulate vegetation response to soil water stress across the typical range of variability that is encountered for current European weather and climate conditions, including extremes of land surface temperature and soil moisture drought. A generalized approach performs better in current climate conditions and promises to be, based on responses to recently observed extremes, more trustworthy for predicting the impacts of climate change.
High frequency variability of the Atlantic meridional overturning circulation
We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26° N. We analyse variability on a range of timescales, from five-daily to interannual. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the time-mean is within about 10 % of the observational estimate. The amplitude of the simulated annual cycle is similar to observations, but the shape of the annual cycle shows a spread among the models. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. The time-mean of the western boundary current near the latitude of the RAPID/MOCHA array has a much wider model spread than the AMOC does, indicating large differences among models in the simulation of the wind-driven gyre circulation, and its variability is unrealistically small in the models. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26° N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15–45° N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the North Atlantic; consequently interannual variability of the AMOC at 50° N, where it is particularly relevant to European climate, is not well-correlated with that of the AMOC at 26° N, where it is monitored by the RAPID/MOCHA array.
Detection and attribution of human influence on regional precipitation
Understanding how human influence on the climate is affecting precipitation around the world is immensely important for defining mitigation policies, and for adaptation planning. Yet despite increasing evidence for the influence of climate change on global patterns of precipitation, and expectations that significant changes in regional precipitation should have already occurred as a result of human influence on climate, compelling evidence of anthropogenic fingerprints on regional precipitation is obscured by observational and modelling uncertainties; and by using current methods, it is likely to remain so for years to come. This is in spite of substantial ongoing improvements in models, new reanalyses and a satellite record that spans over thirty years. If we are to quantify how human-induced climate change is affecting the regional water cycle, we need to consider new ways of identifying the effects of natural and anthropogenic influences on precipitation that take full advantage of our physical expectations.
Year-round impact of winter sea ice thickness observations on seasonal forecasts
Nowadays many seasonal forecasting centres provide dynamical predictions of sea ice. While initializing sea ice by assimilating sea ice concentration (SIC) is common, constraining initial conditions of sea ice thickness (SIT) is only in its early stages. Here, we make use of the availability of Arctic-wide winter SIT observations covering 2011–2016 to constrain SIT in the ECMWF (European Centre for Medium-Range Weather Forecasts) ocean–sea-ice analysis system with the aim of improving the initial conditions of the coupled forecasts. The impact of the improved initialization on the predictive skill of pan-Arctic sea ice for lead times of up to 7 months is investigated in a low-resolution analogue of the currently operational ECMWF seasonal forecasting system SEAS5. By using winter SIT information merged from CS2 and SMOS (CS2SMOS: CryoSat-2 Soil Moisture and Ocean Salinity), substantial changes in sea ice volume and thickness are found in the ocean–sea-ice analysis, including damping of the overly strong seasonal cycle of sea ice volume. Compared with the reference experiment, which does not use SIT information, forecasts initialized using SIT data show a reduction of the excess sea ice bias and an overall reduction of seasonal sea ice area forecast errors of up to 5 % at lead months 2 to 5. Change in biases is the main forecast impact. Using the integrated ice edge error (IIEE) metric, we find significant improvement of up to 28 % in the September sea ice edge forecast started in April. However, sea ice forecasts for September started in spring still exhibit a positive sea ice bias, which points to a melting that is too slow in the forecast model. A slight degradation in skill is found in the early freezing season sea ice forecasts initialized in July and August, which is related to degraded initial conditions during these months. Both ocean reanalyses, with and without SIT constraint, show strong melting in the middle of the melt season compared to the forecasts. This excessive melting related to positive net surface radiation biases in the atmospheric flux forcing of the ocean reanalyses remains and consequently degrades analysed summer SIC. The impact of thickness initialization is also visible in the sea surface and near-surface temperature forecasts. While positive forecast impact is seen in near-surface temperature forecasts of early freezing season (September–October–November) initialized in May (when the sea ice initial conditions have been observationally constrained in the preceding winter months), negative impact is seen for the same season when initialized in the month of August when the sea ice initial conditions are degraded. We conclude that the strong thinning by CS2SMOS initialization mitigates or enhances seasonally dependent forecast model errors in sea ice and near-surface temperatures in all seasons. The results indicate that the memory of SIT in the spring initial conditions lasts into autumn, influencing forecasts of the peak summer melt and early freezing seasons. Our results demonstrate the usefulness of new sea ice observational products in both data assimilation and forecasting systems, and they strongly suggest that better initialization of SIT is crucial for improving seasonal sea ice forecasts.
On the Treatment of Soil Water Stress in GCM Simulations of Vegetation Physiology
Current land surface schemes in weather and climate models make use of the so-called coupled photosynthesis–stomatal conductance (A–gs) models of plant function to determine the surface fluxes that govern the terrestrial energy, water and carbon budgets. Plant physiology is controlled by many environmental factors, and a number of complex feedbacks are involved, but soil moisture control on root water uptake is primary, particularly in sub-tropical to temperate ecosystems. Land surface models represent plant water stress in different ways, but most implement a water stress factor, β, which ranges linearly (more recently also curvilinearly) between β = 1 for unstressed vegetation and β = 0 at the wilting point, expressed in terms of volumetric water content (θ). β is most commonly used to either limit A or gs, and hence carbon and water fluxes, and a pertinent research question is whether these treatments are in fact interchangeable. Following Egea et al. (Agricultural and Forest Meteorology, 2011, 151 (10), 1,370–1,384) and Verhoef et al. (Agricultural and Forest Meteorology, 2014, 191, 22–32), we have implemented new β treatments, reflecting higher levels of biophysical complexity in a state-of-the-art LSM, Joint UK Land Environment Simulator, by allowing root zone soil moisture to limit plant function non-linearly and via individual routes (carbon assimilation, stomatal conductance, or mesophyll conductance) as well as any (non-linear) combinations thereof. The treatment of β does matter to the prediction of water and carbon fluxes: this study demonstrates that it represents a key structural uncertainty in contemporary LSMs, in terms of predictions of gross primary productivity, energy fluxes and soil moisture evolution, both in terms of climate means and response to a number of European droughts, including the 2003 heat wave. Treatments allowing ß to act on vegetation fluxes via stomatal and mesophyll routes are able to simulate the spatiotemporal variability in water use efficiency with higher fidelity during the growing season; they also support a broader range of ecosystem responses, e.g., those observed in regions that are radiation limited or water limited. We conclude that current practice in weather and climate modelling is inconsistent, as well as too simplistic, failing to credibly simulate vegetation response to soil water stress across the typical range of variability that is encountered for current European weather and climate conditions, including extremes of land surface temperature and soil moisture drought. A generalized approach performs better in current climate conditions and promises to be, based on responses to recently observed extremes, more trustworthy for predicting the impacts of climate change.