Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"Sarto, Maria Sabrina"
Sort by:
A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets
2016
The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges.
Journal Article
Flexible Ecoflex®/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors
by
Fortunato, Marco
,
Bellagamba, Irene
,
Tamburrano, Alessio
in
Aluminum
,
Chemical vapor deposition
,
Curing
2020
The high demand for multifunctional devices for smart clothing applications, human motion detection, soft robotics, and artificial electronic skins has encouraged researchers to develop new high-performance flexible sensors. In this work, we fabricated and tested new 3D squeezable Ecoflex® open cell foams loaded with different concentrations of graphene nanoplatelets (GNPs) in order to obtain lightweight, soft, and cost-effective piezoresistive sensors with high sensitivity in a low-pressure regime. We analyzed the morphology of the produced materials and characterized both the mechanical and piezoresistive response of samples through quasi-static cyclic compression tests. Results indicated that sensors infiltrated with 1 mg of ethanol/GNP solution with a GNP concentration of 3 mg/mL were more sensitive and stable compared to those infiltrated with the same amount of ethanol/GNP solution but with a lower GNP concentration. The electromechanical response of the sensors showed a negative piezoresistive behavior up to ~10 kPa and an opposite trend for the 10–40 kPa range. The sensors were particularly sensitive at very low deformations, thus obtaining a maximum sensitivity of 0.28 kPa−1 for pressures lower than 10 kPa.
Journal Article
Waterproof Graphene-PVDF Wearable Strain Sensors for Movement Detection in Smart Gloves
by
Cheraghi Bidsorkhi, Hossein
,
Tamburrano, Alessio
,
D’Aloia, Alessandro Giuseppe
in
Carbon
,
Graphene
,
Human mechanics
2021
In this work, new highly sensitive graphene-based flexible strain sensors are produced. In particular, polyvinylidene fluoride (PVDF) nanocomposite films filled with different amounts of graphene nanoplatelets (GNPs) are produced and their application as wearable sensors for strain and movement detection is assessed. The produced nanocomposite films are morphologically characterized and their waterproofness, electrical and mechanical properties are measured. Furthermore, their electromechanical features are investigated, under both stationary and dynamic conditions. In particular, the strain sensors show a consistent and reproducible response to the applied deformation and a Gauge factor around 30 is measured for the 1% wt loaded PVDF/GNP nanocomposite film when a deformation of 1.5% is applied. The produced specimens are then integrated in commercial gloves, in order to realize sensorized gloves able to detect even small proximal interphalangeal joint movements of the index finger.
Journal Article
Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste
by
Bossù, Maurizio
,
Saccucci, Matteo
,
Salucci, Alessandro
in
Apatite
,
Biomimetic nanocrystals
,
Biomimetics
2019
Background
Dental caries is a recognized worldwide public health problem. Despite being one of the most effective strategies against dental caries, the excessive use of fluorine may result in a potential risk of developing dental fluorosis especially in children under age of six. The purpose of this work is to analyze a fluorine-free toothpaste containing Biomimetic Hydroxyapatite to assess enamel re-mineralizing and repairing properties.
Results
The study was performed in vitro and in vivo, comparing the hydroxyapatite toothpaste with two others toothpaste containing different fluorine concentrations. The coating effect of the micro-structured Hydroxyapatite nanoparticles reintegrates the enamel with a biomimetic film reproducing the structure and the morphology of the biologic Hydroxyapatite of the enamel. As demonstrated, the coating is due to the deposit of a new layer of apatite, which presents fewer particles than the natural enamel, not based on the chemical—physical changes occurring in fluorinated toothpastes. Moreover, it shows resistance to brushing as a consequence of chemical bonds between the synthetic and natural crystals of the enamel.
Conclusions
The use of Biomimetic Hydroxyapatite toothpastes has proven to be a valuable prevention measure against dental caries in primary dentition since it prevents the risk of fluorosis.
Journal Article
Exploring the Capabilities of a Piezoresistive Graphene-Loaded Waterborne Paint for Discrete Strain and Spatial Sensing
by
Fortunato, Marco
,
Tamburrano, Alessio
,
Proietti, Alessandro
in
Aeronautics
,
Algorithms
,
Analysis
2022
The development of a piezoresistive coating produced from dispersing graphene nanoplatelets (GNPs) inside a commercial water-based polyurethane paint is presented. The feasibility of its exploitation for realizing highly sensitive discrete strain sensors and to measure spatial strain distribution using linear and two-dimensional depositions was investigated. Firstly, the production process was optimized to achieve the best electromechanical response. The obtained materials were then subjected to different characterizations for structural and functional investigations. Morphological analyses showed a homogenous dispersion of GNPs within the host matrix and an average thickness of about 75 µm of the obtained nanostructured films. By several adhesion tests, it was demonstrated that the presence of the nanostructures inside the paint film lowered the adhesion strength by only 20% in respect to neat paint. Through electrical tests, the percolation curve of the nanomaterial was acquired, showing an effective electrical conductivity ranging from about 10−4 S/m to 3.5 S/m in relation to the different amounts of filler dispersed in the neat paint: in particular, samples with weight fractions of 2, 2.5, 3, 3.5, 4, 5 and 6 wt% of GNPs were produced and characterized. Next, the sensitivity to flexural strain of small piezoresistive sensors deposited by a spray-coating technique on a fiberglass-reinforced epoxy laminate beam was measured: a high gauge factor of 33 was obtained at a maximum strain of 1%. Thus, the sensitivity curve of the piezoresistive material was successively adopted to predict the strain along a multicontact painted strip on the same beam. Finally, for a painted laminate plate subjected to a mechanical flexural load, we demonstrated, through an electrical resistance tomography technique, the feasibility to map the electrical conductivity variations, which are strictly related to the induced strain/stress field. As a further example, we also showed the possibility of using the coating to detect the presence of conducting objects and damage.
Journal Article
A biocompatible propolis pollen and ZnO nanorod composite with antimicrobial and antibiofilm activity
2025
In the context of growing infections, plant-derived natural compounds play a crucial role in the search for new antimicrobial agents, as they offer a diverse array of bioactive molecules. Similarly, nanomaterials, particularly those based on zinc oxide, hold great potential for biomedical applications due to their unique properties. This study evaluates the antimicrobial efficacy of a formulation combining propolis, pollen, and ZnO nanorods (PrPoZnO). SEM and FTIR analysis confirmed ZnO nanorod integration within the propolis-pollen matrix. Antimicrobial testing revealed significant inhibitory effects on
Staphylococcus aureus
and
Pseudomonas aeruginosa
, with viability reduction of up to 85% and biofilm inhibition of 50% and 40%, respectively. The PrPoZnO mixture also reduced
Candida albicans
growth by 90%, inhibited biofilm formation by 60%, and suppressed the yeast-to-hyphae transition, a key virulence factor. Furthermore, the biocompatibility testing of the PrPoZnO mixture in several cell lines demonstrated no cytotoxic effects at the higher concentration, suggesting its potential for safe biomedical applications. In terms of mechanism, PrPoZnO modulated oxidative stress responses, decreasing ROS levels in bacteria while inducing ROS production in
C. albicans
, suggesting that ZnO nanorods are the key player to induce mechanical damage of microbes. These findings underscore the potential of PrPoZnO as an innovative and biocompatible compound, supporting its suitability for further clinical investigation.
Journal Article
Graphene-based dental adhesive with anti-biofilm activity
2017
Background
Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as
Streptococcus mutans
. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties.
Results
Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth.
Conclusions
A significantly lower vitality of
S. mutans
cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive.
Journal Article
New Sensing and Radar Absorbing Laminate Combining Structural Damage Detection and Electromagnetic Wave Absorption Properties
by
Marra, Fabrizio
,
Fortunato, Marco
,
Tamburrano, Alessio
in
Aeronautics
,
Aerospace industry
,
Aircraft
2022
Within the paradigm of smart mobility, the development of innovative materials aimed at improving resilience against structural failure in lightweight vehicles and electromagnetic interferences (EMI) due to wireless communications in guidance systems is of crucial relevance to improve safety, sustainability, and reliability in both aeronautical and automotive applications. In particular, the integration of intelligent structural health monitoring and electromagnetic (EM) shielding systems with radio frequency absorbing properties into a polymer composite laminate is still a challenge. In this paper, we present an innovative system consisting of a multi-layered thin panel which integrates nanostructured coatings to combine EM disturbance suppression and low-energy impact monitoring ability. Specifically, it is composed of a stack of dielectric and conductive layers constituting the sensing and EM-absorbing laminate (SEAL). The conductive layers are made of a polyurethane paint filled with graphene nanoplatelets (GNPs) at different concentrations to tailor the effective electrical conductivity and the functionality of the material. Basically, the panel includes a piezoresistive grid, obtained by selectively spraying onto mylar a low-conductive paint with 4.5 wt.% of GNPs and an EM-absorbing lossy sheet made of the same polyurethane paint but properly modified with a higher weight fraction (8 wt.%) of graphene. The responses of the grid’s strain sensors were analyzed through quasi-static mechanical bending tests, whereas the absorbing properties were evaluated through free-space and waveguide-based measurement techniques in the X, Ku, K, and Ka bands. The experimental results were also validated by numerical simulations.
Journal Article
Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling
by
Marco Fortunato
,
Maria Sabrina Sarto
,
Maria Laura Santarelli
in
cofe2o4
,
magnetic poling
,
piezoelectric effect
2021
In the last years flexible, low-cost, wearable, and innovative piezoelectric nanomaterials have attracted considerable interest regarding the development of energy harvesters and sensors. Among the piezoelectric materials, special attention has been paid to electroactive polymers such as poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe), which is one of the most extensively investigated piezoelectric polymers, due to the high β phase content resulting from specific curing or processing conditions. However, to obtain a high piezoelectric coefficient (d33) alignment of the β phase domains is needed, which is usually reached through applying a high electric field at moderate temperatures. This process, usually referred to as electrical poling, requires the deposition of contact electrodes on the sample surface and the use of high-voltage apparatus. In the present work, in order to overcome these constraints, we have produced, characterized, and studied a polymer nanocomposite consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β phase alignment through an applied DC magnetic field. The magnetic poling was demonstrated to be particularly effective, leading to a piezoelectric coefficient d33 with values up to 39 pm/V. This type of poling does not need the use of a top electrode or of high magnetic fields (the maximum value of d33 was obtained at 50 mT, using a current of 0.4 A) making the PVDF-TrFE/CoFe2O4 nanocomposite suitable for the fabrication of highly efficient devices for energy harvesting and wearable sensors.
Journal Article
Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties
by
Faggio, Giuliana
,
Tamburrano, Alessio
,
Sarto, Francesca
in
carbon
,
electrical conductivity
,
Full Research Paper
2015
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp 2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 10 5 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Journal Article