Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
137 result(s) for "Sato, Hiro"
Sort by:
Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment
Significant technological advances in radiotherapy have been made in the past few decades. High-precision radiotherapy has recently become popular and is contributing to improvements in the local control of the irradiated target lesions and the reduction of adverse effects. Accordingly, for long-term survival, the importance of systemic cancer control, including at non-irradiated sites, is growing. Toward this challenge, the treatment methods in which anti-PD-1/PD-L1 antibodies that exert systemic effects by restoring anti-tumour immunity are combined with radiotherapy has attracted attention in recent years. Previous studies have reported the activation of anti-tumour immunity by radiotherapy, which simultaneously elevates PD-L1 expression, suggesting a potential for combination therapy. Radiotherapy induces so-called ‘immunogenic cell death’, which involves cell surface translocation of calreticulin and extracellular release of high-mobility group protein box 1 (HMGB-1) and adenosine-5′-triphosphate (ATP). Furthermore, radiotherapy causes immune activation via MHC class I upregulation and cGAS–STING pathway. In contrast, induction of immunosuppressive lymphocytes and the release of immunosuppressive cytokines and chemokines by radiotherapy contribute to immunosuppressive reactions. In this article, we review immune responses induced by radiotherapy as well as previous reports to support the rationale of combination of radiotherapy and anti-PD-1/PD-L1 antibodies. A number of preclinical and clinical studies have shown the efficacy of radiotherapy combined with immune checkpoint inhibition, hence combination therapy is considered to be an important future strategy for cancer treatment.
Regulation of programmed death‐ligand 1 expression in response to DNA damage in cancer cells: Implications for precision medicine
Anti‐programmed death‐1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) therapy, which is one of the most promising cancer therapies, is licensed for treating various tumors. Programmed death‐ligand 1, which is expressed on the surface of cancer cells, leads to the inhibition of T lymphocyte activation and immune evasion if it binds to the receptor PD‐1 on CTLs. Anti‐PD‐1/PD‐L1 Abs inhibit interactions between PD‐1 and PD‐L1 to restore antitumor immunity. Although certain patients achieve effective responses to anti‐PD‐1/PD‐L1 therapy, the efficacy of treatment is highly variable. Clinical trials of anti‐PD‐1/PD‐L1 therapy combined with radiotherapy/chemotherapy are underway with suggestive evidence of favorable outcome; however, the molecular mechanism is largely unknown. Among several molecular targets that can influence the efficacy of anti‐PD‐1/PD‐L1 therapy, PD‐L1 expression in tumors is considered to be a critical biomarker because there is a positive correlation between the efficacy of combined treatment protocols and PD‐L1 expression levels. Therefore, understanding the mechanisms underlying the regulation of PD‐L1 expression in cancer cells, particularly the mechanism of PD‐L1 expression following DNA damage, is important. In this review, we consider recent findings on the regulation of PD‐L1 expression in response to DNA damage signaling in cancer cells. Despite favorable outcomes in clinical trials of anti‐programmed death‐1/programmed death‐ligand 1 therapy, the molecular mechanism is largely unknown. In this review, we consider the recent findings related to the regulation of programmed death‐ligand 1 expression in response to DNA damage signaling in cancer cells.
Base excision repair regulates PD-L1 expression in cancer cells
Programmed death-ligand 1 (PD-L1) is a key factor influencing cancer immunotherapy; however, the regulation of PD-L1 expression in cancer cells remains unclear, particularly regarding DNA damage, repair and its signalling. Herein, we demonstrate that oxidative DNA damage induced by exogenously applied hydrogen peroxide (H 2 O 2 ) upregulates PD-L1 expression in cancer cells. Further, depletion of the base excision repair (BER) enzyme DNA glycosylase augments PD-L1 upregulation in response to H 2 O 2 . PD-L1 upregulation in BER-depleted cells requires ATR/Chk1 kinase activities, demonstrating that PD-L1 upregulation is mediated by DNA damage signalling. Further analysis of The Cancer Genome Atlas revealed that the expression of PD-L1 is negatively correlated with that of the BER/single-strand break repair (SSBR) and tumours with low BER/SSBR gene expression show high microsatellite instability and neoantigen production. Hence, these results suggest that PD-L1 expression is regulated in cancer cells via the DNA damage signalling and neoantigen–interferon-γ pathway under oxidative stress. Highlights Exogenous oxidative DNA damage upregulates PD-L1 expression in cancer cells. BER deficiency augments PD-L1 upregulation following oxidative DNA damage. Tumour samples with BER/SSBR mutations show high microsatellite instability, neoantigen and PD-L1 expression. PD-L1 and BER/SSBR gene expressions are negatively correlated in clinical specimens.
DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells
Accumulating evidence suggests that exogenous cellular stress induces PD-L1 upregulation in cancer. A DNA double-strand break (DSB) is the most critical type of genotoxic stress, but the involvement of DSB repair in PD-L1 expression has not been investigated. Here we show that PD-L1 expression in cancer cells is upregulated in response to DSBs. This upregulation requires ATM/ATR/Chk1 kinases. Using an siRNA library targeting DSB repair genes, we discover that BRCA2 depletion enhances Chk1-dependent PD-L1 upregulation after X-rays or PARP inhibition. In addition, we show that Ku70/80 depletion substantially enhances PD-L1 upregulation after X-rays. The upregulation by Ku80 depletion requires Chk1 activation following DNA end-resection by Exonuclease 1. DSBs activate STAT1 and STAT3 signalling, and IRF1 is required for DSB-dependent PD-L1 upregulation. Thus, our findings reveal the involvement of DSB repair in PD-L1 expression and provide mechanistic insight into how PD-L1 expression is regulated after DSBs. PD-L1 is upregulated in many cancers due to exogenous cellular stress. Here the authors show that PD-L1 is upregulated in response to DNA double strand breaks via STAT and IRF1 signalling.
Adaptive Segmentation and Statistical Analysis for Multivariate Big Data Forecasting
Forecasting high-volume, univariate, and multivariate longitudinal data streams is a critical challenge in Big Data systems, especially with constrained computational resources and pronounced data variability. However, existing approaches often neglect multivariate statistical complexity (e.g., covariance, skewness, kurtosis) of multivariate time series or rely on recency-only windowing that discards informative historical fluctuation patterns, limiting robustness under strict resource budgets. This work makes two core contributions to big data forecasting. First, we establish a formal, multi-dimensional framework for quantifying “data bigness” across statistical, computational, and algorithmic complexities, providing a rigorous foundation for analyzing resource-constrained problems. Second, guided by this framework, we extend and validate the Adaptive High-Fluctuation Recursive Segmentation (AHFRS) algorithm for multivariate time series. By incorporating higher-order statistics such as covariance, skewness, and kurtosis, AHFRS improves predictive accuracy under strict computational budgets. We validate the approach in two stages. First, a real-world case study on a univariate Bitcoin time series provides a practical stress test using a Long Short-Term Memory (LSTM) network as a robust baseline. This validation reveals a significant increase in forecasting robustness, with our method reducing the Root Mean Squared Error (RMSE) by more than 76% in a challenging scenario. Second, its generalizability is established on synthetic multivariate data sets in Finance, Retail, and Healthcare using standard statistical models. Across domains, AHFRS consistently outperforms baselines; in our multivariate Finance simulation, RMSE decreases by up to 62.5% in Finance and Mean Absolute Percentage Error (MAPE) drops by more than 10 percentage points in Healthcare. These results demonstrate that the proposed framework and AHFRS advances the theoretical modeling of data complexity and the design of adaptive, resource-efficient forecasting pipelines for real-world, high-volume data ecosystems.
Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation
Abstract Photons, such as X- or γ-rays, induce DNA damage (distributed throughout the nucleus) as a result of low-density energy deposition. In contrast, particle irradiation with high linear energy transfer (LET) deposits high-density energy along the particle track. High-LET heavy-ion irradiation generates a greater number and more complex critical chromosomal aberrations, such as dicentrics and translocations, compared with X-ray or γ irradiation. In addition, the formation of >1000 bp deletions, which is rarely observed after X-ray irradiation, has been identified following high-LET heavy-ion irradiation. Previously, these chromosomal aberrations have been thought to be the result of misrepair of complex DNA lesions, defined as DNA damage through DNA double-strand breaks (DSBs) and single-strand breaks as well as base damage within 1–2 helical turns (<3–4 nm). However, because the scale of complex DNA lesions is less than a few nanometers, the large-scale chromosomal aberrations at a micrometer level cannot be simply explained by complex DNA lesions. Recently, we have demonstrated the existence of clustered DSBs along the particle track through the use of super-resolution microscopy. Furthermore, we have visualized high-level and frequent formation of DSBs at the chromosomal boundary following high-LET heavy-ion irradiation. In this review, we summarize the latest findings regarding the hallmarks of DNA damage structure and the repair pathway following heavy-ion irradiation. Furthermore, we discuss the mechanism through which high-LET heavy-ion irradiation may induce dicentrics, translocations and large deletions.
Moderately hypofractionated carbon ion radiotherapy for prostate cancer; a prospective observational study “GUNMA0702”
Background Carbon ion Radiotherapy for prostate cancer is widely used, however reports are limited from single institute or short follow up. We performed a prospective observational study (GUNMA0702) to evaluate the feasibility and efficacy of carbon ion radiotherapy for localized and locally advanced prostate cancer. Methods Between June 2010 and August 2013, 304 patients with localized prostate cancer were treated, with a median follow-up duration of 60 months. All patients received carbon ion radiotherapy with 57.6 Gy (RBE) in 16 fractions over 4 weeks. Hormonal therapy was given according to the risk group. Toxicity was reported according to the Common Toxicity Criteria for Adverse Event, Version 4.0 by the National Cancer Institute. Results The overall 5-year biochemical relapse-free rate was 92.7%, with rates of 91.7, 93.4, and 92.0% in low-risk, intermediate-risk, and high-risk patients, respectively. The 5-year local control and overall survival rates were 98.4 and 96.6%, respectively. Acute grade 3 or greater toxicity was not observed. Late grade 2 and grade 3 genitourinary and gastrointestinal toxicity rates were 9 and 0.3%, and 0.3, and 0%, respectively. Conclusions The present protocol of carbon ion radiotherapy for prostate cancer provided low genitourinary and gastrointestinal toxicity with good biochemical control within 5 years. Trial registration University Medical Information Network Clinical Trial Registry number: UMIN000003827 .
High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells
Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells
Anti-tumor immunity modulates the local effects of radiation therapy. High mobility group box 1 (HMGB1) plays a pivotal role in activating antigen-specific T-cell responses. Here, we examined the relationship between linear energy transfer (LET) and HMGB1 release. We assessed the proportions of KYSE-70, HeLa and SiHa cells surviving after carbon-ion (C-ion) beam irradiation with different LET values, using a clonogenic assay. The D10, the dose at which 10% of cells survived, was calculated using a linear-quadratic model. HMGB1 levels in the culture supernatants of C-ion beam-irradiated tumor cells were assessed by enzyme-linked immunosorbent assay. The D10 doses for 13 keV/μm of C-ion irradiation in KYSE-70, HeLa and SiHa cells were 2.8, 3.9 and 4.1 Gy, respectively, whereas those for 70 keV/μm C-ion irradiation were 1.4, 1.9 and 2.3 Gy, respectively. We found that 70 keV/μm of C-ion irradiation significantly increased HMGB1 levels in the culture supernatants of all cell lines 72 h after irradiation compared with non-irradiated controls. Furthermore, 70 keV/μm of C-ion irradiation significantly increased HMGB1 levels in the culture supernatants of all cell lines 72 h after irradiation compared with 13 keV/μm. The results suggest that HMGB1 release from several cancer cell lines increases with increased LET.
Comparative Analysis of the Antitumor Immune Profiles of Paired Radiotherapy-naive and Radiotherapy-treated Cervical Cancer Tissues
Background/Aim: This study aimed to elucidate the effect of radiotherapy on expression of immune response-related genes in cervical cancer tissues. Materials and Methods: Tumor tissues were obtained from 16 patients with cervical cancer before initiation of radiotherapy and after treatment with 10 Gy X-rays, delivered in five fractions. Expression of 730 immune response-related genes was assessed using an nCounter PanCancer Immune Profiling Panel (NanoString Technologies. Seattle, WA, USA). Results: Of the 730 genes examined, 41 showed significant changes (fold change of >1.5 or <0.66) in expression in post-radiotherapy samples (28 up-regulated and 13 down-regulated). Analysis of immune cell type-specific genes suggested predominant upregulation of those related to innate immunity postradiotherapy. Interestingly, cytotoxic T-lymphocyte-associated protein (CTLA4), a key negative regulator of T-cell activation, was marked down-regulated in 93.7% of patients, with an average fold-change of 2.0. Conclusion: To our knowledge, this study is the first to show down-regulation of CTLA4 in clinical cervical cancer tissues after treatment with radiotherapy.