Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
251 result(s) for "Sato Tatsuhiko"
Sort by:
Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS
By extending our previously established model, here we present a new model called \"PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,\" which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.
Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes
A new model called \"PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0\" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).
Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure
After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosmic-ray dose rates as well as the world population. This study hence re-evaluated the population-weighted annual effective doses and their probability densities for the entire world as well as for 230 individual nations, using a sophisticated cosmic-ray flux calculation model in tandem with detailed grid population and elevation databases. The resulting world population-weighted annual effective dose was determined to be 0.32 mSv, which is smaller than the UNSCEAR’s evaluation by 16%, with a range from 0.23 to 0.70 mSv covering 99% of the world population. These values were noted to vary with the solar modulation condition within a range of approximately 15%. All assessed population-weighted annual effective doses as well as their statistical information for each nation are provided in the supplementary files annexed to this report. These data improve our understanding of cosmic-ray radiation exposures to populations globally.
Development of a method for calculating effective displacement damage doses in semiconductors and applications to space field
The displacement damage dose (DDD) is a common index used to predict the life of semiconductor devices employed in space-based environments where they will be exposed to radiation. The DDD is commonly estimated from the non-ionizing energy loss based on the Norgett-Robinson-Torrens (NRT) model, although a new definition for a so-called effective DDD considers the molecular dynamic (MD) simulation with the amorphization in semiconductors. The present work developed a new model for calculating the conventional and effective DDD values for silicon carbide (SiC), indium arsenide (InAs), gallium arsenide (GaAs) and gallium nitride (GaN) semiconductors. This model was obtained by extending the displacement per atom tally implemented in the particle and heavy ion transport code system (PHITS). This new approach suggests that the effective DDD is higher than the conventional DDD for arsenic-based compounds due to the amorphization resulting from direct impacts, while this relationship is reversed for SiC because of recombination defects. In the case of SiC and GaN exposed to protons, the effective DDD/conventional DDD ratio decreases with proton energy. In contrast, for InAs and GaAs, this ratio increases to greater than 1 at proton energies up to 100 MeV and plateaus because the defect production efficiency, which is the ratio of the number of stable displacements at the end of collision cascade simulated by MD simulations to the number of defects calculated by NRT model, does not increase at damage energy values above 20 keV. The practical application of this model was demonstrated by calculating the effective DDD values for semiconductors sandwiched between a thin glass cover and an aluminum plate in a low-Earth orbit. The results indicated that the effective DDD could be dramatically reduced by increasing the glass cover thickness to 200 μm, thus confirming the importance of shielding semiconductor devices used in space. This improved PHITS technique is expected to assist in the design of semiconductors by allowing the effective DDD values for various semiconductors having complex geometries to be predicted in cosmic ray environments.
Analysis of scintillation light intensity by microscopic radiation transport calculation and Förster quenching model
The scintillation light yield of plastic scintillator considering the quenching effect is reproduced by a calculation model based on a track-structure simulation code and the Förster effect. Energy deposition and its nm-scale spatial arrangement in the irradiation by electrons, protons, and heavy ions (4He to 81Br) in an NE-102A scintillator were simulated by a track-structure simulation code. The spatial arrangements of the excited molecules emitting scintillation light and those dissipating the excitation energy were then obtained to calculate the strength of the quenching effect. Light emission from the excited molecules was integrated to finally obtain the observable light yield. The calculated light yields are in good agreement with the earlier measurement data. Moreover, in the case of low-LET particle incidence, a statistical micro-dosimetric model can substitute the track-structure simulation code for reproducing the light yield.
Prospective comparison of accuracy of intraocular lens calculation formulas in phacovitrectomy: a pilot study in a real-world clinical practice
Abstract PurposeTo compare the accuracy of intraocular lens (IOL) power calculations among IOL formulas after phacovitrectomy.MethodsWe prospectively enrolled 206 eyes of 206 patients who underwent 25-gauge phacovitrectomy, without gas tamponade, for macular pathology. Pre-operative optical biometry used the IOLMaster 700 to calculate the IOL power with the new formulas, i.e. the Barrett Universal II (BU II), Emmetropia Verifying Optical version 2.0, Hill-Radial Basis Function (RBF) version 3.0, Kane, and Ladas Super Formula, and conventional formulas, i.e. Haigis, Hoffer Q, Holladay 1, Holladay 2, and Sanders-Retzlaff-Kraff/T (SRK/T). A single-piece foldable IOL was implanted in all cases. Manifest refractions were measured before and 3 months after surgery.ResultsThe BU II formula showed the lowest standard deviation and mean and median absolute errors and had the highest percentage of eyes with a refractive prediction error within ± 0.25 D. The absolute error was significantly lower with the four new formulas, except the Hill-RBF, than with the Hoffer Q (all p =  ≤ 0.010) and Holladay 1 formulas (all p =  < 0.010). The absolute error with the BU II formula was also lower than that with the Holladay 2 (p = 0.012) and SRK/T (p = 0.024) formulas.ConclusionOverall, the new IOL formulas, except the Hill-RBF, were superior to some of the conventional formulas for calculating IOL power in phacovitrectomy.
The impact of dose rate on responses of human lens epithelial cells to ionizing irradiation
The knowledge on responses of human lens epithelial cells (HLECs) to ionizing radiation exposure is important to understand mechanisms of radiation cataracts that are of concern in the field of radiation protection and radiation therapy. However, biological effects in HLECs following protracted exposure have not yet fully been explored. Here, we investigated the temporal kinetics of γ-H2AX foci as a marker for DNA double-strand breaks (DSBs) and cell survival in HLECs after exposure to photon beams at various dose rates (i.e., 150 kVp X-rays at 1.82, 0.1, and 0.033 Gy/min, and 137 Cs γ-rays at 0.00461 Gy/min (27.7 cGy/h) and 0.00081 Gy/min (4.9 cGy/h)), compared to those in human lung fibroblasts (WI-38). In parallel, we quantified the recovery for DSBs and cell survival using a biophysical model. The study revealed that HLECs have a lower DSB repair rate than WI-38 cells. There is no significant impact of dose rate on cell survival in both cell lines in the dose-rate range of 0.033–1.82 Gy/min. In contrast, the experimental residual γ-H2AX foci showed inverse dose rate effects (IDREs) compared to the model prediction, highlighting the importance of the IDREs in evaluating radiation effects on the ocular lens.
Short-term Dynamics after Single- and Three-piece Acrylic Intraocular Lens Implantation: A Swept-source Anterior Segment Optical Coherence Tomography Study
Accurate alignment of an intraocular lens (IOL) is indispensable for achieving accurate postoperative refractive outcomes. Thus, we evaluated decentration and tilt of single- and three-piece IOLs, as well as anterior chamber depth (ACD), at 3 hours, 24 hours, 2 weeks, and 4 weeks after cataract surgery, using swept-source anterior segment optical coherence tomography. There was no significant difference in postoperative visual acuity between eyes with single- or three-piece IOLs. Absolute values of IOL decentration at 24 hours and 2 weeks after surgery were significantly larger ( P  = 0.008 and 0.046, respectively) in eyes with the single-piece IOL than in those with the three-piece IOL. Both single- and three-piece IOLs tended to tilt toward the inferotemporal direction; however, there was no significant difference in the absolute values of IOL tilt at any postoperative time point. ACD at 24 hours after surgery was significantly deeper ( P  = 0.009) in eyes with the three-piece IOL, compared with eyes with the single-piece IOL. Therefore, although both single- and three-piece IOL locations varied transiently after surgery, IOL locations were similar between both IOLs at 4 weeks after surgery and were not associated with any statistical difference in visual function.
Probabilistic risk assessment of solar particle events considering the cost of countermeasures to reduce the aviation radiation dose
Cosmic-ray exposure to flight crews and passengers, which is called aviation radiation exposure, is an important topic in radiological protection, particularly for solar energetic particles (SEP). We therefore assessed the risks associated with the countermeasure costs to reduce SEP doses and dose rates for eight flight routes during five ground level enhancements (GLE). A four-dimensional dose-rate database developed by the Warning System for Aviation Exposure to Solar Energetic Particles, WASAVIES, was employed in the SEP dose evaluation. As for the cost estimation, we considered two countermeasures; one is the cancellation of the flight, and the other is the reduction of flight altitudes. Then, we estimated the annual occurrence frequency of significant GLE events that would bring the maximum flight route dose and dose rate over 1.0 mSv and 80 μSv/h, respectively, based on past records of GLE as well as historically large events observed by the cosmogenic nuclide concentrations in tree rings and ice cores. Our calculations suggest that GLE events of a magnitude sufficient to exceed the above dose and dose rate thresholds, requiring a change in flight conditions, occur once every 47 and 17 years, respectively, and their conservatively-estimated annual risks associated with the countermeasure costs are up to around 1.5 thousand USD in the cases of daily-operated long-distance flights.
Evaluation of relative biological effectiveness for diseases of the circulatory system based on microdosimetry
In the next decade, the International Commission on Radiological Protection (ICRP) will issue the next set of general recommendations, for which evaluation of relative biological effectiveness (RBE) for various types of tissue reactions would be needed. ICRP has recently classified diseases of the circulatory system (DCS) as a tissue reaction, but has not recommended RBE for DCS. We therefore evaluated the mean and uncertainty of RBE for DCS by applying a microdosimetric kinetic model specialized for RBE estimation of tissue reactions. For this purpose, we analyzed several RBE data for DCS determined by past animal experiments and evaluated the radius of the subnuclear domain best fit to each experiment as a single free parameter included in the model. Our analysis suggested that RBE for DCS tends to be lower than that for skin reactions, and their difference was borderline significant due to large variances of the evaluated parameters. We also found that RBE for DCS following mono-energetic neutron irradiation of the human body is much lower than that for skin reactions, particularly at the thermal energy and around 1 MeV. This tendency is considered attributable not only to the intrinsic difference of neutron RBE between skin reactions and DCS but also to the difference in the contributions of secondary γ-rays to the total absorbed doses between their target organs. These findings will help determine RBE by ICRP for preventing tissue reactions.