Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Saudou, Frederic"
Sort by:
Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington’s disease models
Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington’s disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD. We demonstrate that defects in the brain-derived neurotrophic factor (BDNF)–tyrosine receptor kinase B (TrkB) signaling pathway contribute to the deregulated AMPAR trafficking by reducing the interaction between transmembrane AMPA receptor regulatory proteins (TARPs) and the PDZ-domain scaffold protein PSD95. The disturbed AMPAR surface diffusion is rescued by the antidepressant drug tianeptine via the BDNF signaling pathway. Tianeptine also restores the impaired LTP and hippocampus-dependent memory in different HD mouse models. These findings unravel a mechanism underlying hippocampal synaptic and memory dysfunction in HD, and highlight AMPAR surface diffusion as a promising therapeutic target. Cognitive decline in Huntington’s disease (HD) may be due to impaired hippocampal synaptic plasticity. In this study the authors show that AMPA receptor surface diffusion, a key player in synaptic plasticity, is deregulated in multiple HD mouse models as a result of impaired BDNF signalling that underlies the memory deficits, and can be pharmacologically rescued.
Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.Accumulating evidence indicates that impaired glucose metabolism in the brain is involved in the cause and progression of neurodegenerative disorders of ageing such as Alzheimer disease. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by rescuing, protecting or normalizing brain energetics.
Potential function for the Huntingtin protein as a scaffold for selective autophagy
Significance The normal function of the Huntingtin (HTT) protein is emerging. Here we report that selective autophagy requires an intact HTT protein in Drosophila and mouse CNS. We describe similarities in structure and binding activity between the C-terminal domain of HTT and the yeast autophagy scaffold protein Atg11, suggesting that HTT may normally function as a scaffold for various types of selective autophagy. Mice expressing an expanded repeat form of HTT also show deficits in protein clearance. Because autophagy is critical for clearance of cellular proteins, including mutant HTT, the impairment of normal HTT function by the polyQ expansion could suppress activity of the autophagy machinery. These results may have important implications when evaluating therapeutic strategies for HD. Although dominant gain-of-function triplet repeat expansions in the Huntingtin ( HTT ) gene are the underlying cause of Huntington disease (HD), understanding the normal functions of nonmutant HTT protein has remained a challenge. We report here findings that suggest that HTT plays a significant role in selective autophagy. Loss of HTT function in Drosophila disrupts starvation-induced autophagy in larvae and conditional knockout of HTT in the mouse CNS causes characteristic cellular hallmarks of disrupted autophagy, including an accumulation of striatal p62/SQSTM1 over time. We observe that specific domains of HTT have structural similarities to yeast Atg proteins that function in selective autophagy, and in particular that the C-terminal domain of HTT shares structural similarity to yeast Atg11, an autophagic scaffold protein. To explore possible functional similarity between HTT and Atg11, we investigated whether the C-terminal domain of HTT interacts with mammalian counterparts of yeast Atg11-interacting proteins. Strikingly, this domain of HTT coimmunoprecipitates with several key Atg11 interactors, including the Atg1/Unc-51–like autophagy activating kinase 1 kinase complex, autophagic receptor proteins, and mammalian Atg8 homologs. Mutation of a phylogenetically conserved WXXL domain in a C-terminal HTT fragment reduces coprecipitation with mammalian Atg8 homolog GABARAPL1, suggesting a direct interaction. Collectively, these data support a possible central role for HTT as an Atg11-like scaffold protein. These findings have relevance to both mechanisms of disease pathogenesis and to therapeutic intervention strategies that reduce levels of both mutant and normal HTT.
Region-specific and state-dependent action of striatal GABAergic interneurons
Striatum processes a wide range of functions including goal-directed behavior and habit formation, respectively encoded by the dorsomedial striatum (DMS) and dorsolateral striatum (DLS). GABAergic feedforward inhibition is known to control the integration of cortical information by striatal projection neurons (SPNs). Here we questioned whether this control is specific between distinct striatal functional territories. Using opto-activation and opto-inhibition of identified GABAergic interneurons, we found that different circuits are engaged in DLS and DMS, both ex vivo and in vivo: while parvalbumin interneurons efficiently control SPNs in DLS, somatostatin interneurons control SPNs in DMS. Moreover, both parvalbumin and somatostatin interneurons use a dual hyperpolarizing/depolarizing effect to control cortical input integration depending on SPN activity state: GABAergic interneurons potently inhibit spiking SPNs while in resting SPNs, they favor cortical activity summation via a depolarizing effect. Our findings establish that striatal GABAergic interneurons exert efficient territory-specific and state-dependent control of SPN activity and functional output. Striatal GABAergic interneurons regulate the influence of cortical inputs on striatal projection neurons through feedforward inhibition. Here, the authors report that this inhibition is mediated mainly by PV interneurons in the dorsolateral striatum and SOM interneurons in the dorsomedial striatum.
Mutations in the KIF21B kinesin gene cause neurodevelopmental disorders through imbalanced canonical motor activity
KIF21B is a kinesin protein that promotes intracellular transport and controls microtubule dynamics. We report three missense variants and one duplication in KIF21B in individuals with neurodevelopmental disorders associated with brain malformations, including corpus callosum agenesis (ACC) and microcephaly. We demonstrate, in vivo, that the expression of KIF21B missense variants specifically recapitulates patients’ neurodevelopmental abnormalities, including microcephaly and reduced intra- and inter-hemispheric connectivity. We establish that missense KIF21B variants impede neuronal migration through attenuation of kinesin autoinhibition leading to aberrant KIF21B motility activity. We also show that the ACC-related KIF21B variant independently perturbs axonal growth and ipsilateral axon branching through two distinct mechanisms, both leading to deregulation of canonical kinesin motor activity. The duplication introduces a premature termination codon leading to nonsense-mediated mRNA decay. Although we demonstrate that Kif21b haploinsufficiency leads to an impaired neuronal positioning, the duplication variant might not be pathogenic. Altogether, our data indicate that impaired KIF21B autoregulation and function play a critical role in the pathogenicity of human neurodevelopmental disorder. Kinesins regulate intracellular transport and microtubule dynamics. Here, the authors show that KIF21B variants in humans associate with corpus callosum agenesis and microcephaly. Using mice and zebrafish, they showed the cellular mechanisms altered by the missense KIF21B variants.
Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons
Studying intracellular dynamics in neurons is crucial to better understand how brain circuits communicate and adapt to environmental changes. In neurons, axonal secretory vesicles underlie various functions from growth during development to plasticity in the mature brain. Similarly, transport of mitochondria, the power plant of the cell, regulates both axonal development and synaptic homeostasis. However, because of their submicrometric size and rapid velocities, studying the kinetics of these organelles in projecting axons in vivo is technically challenging. In parallel, primary neuronal cultures are adapted to study axonal transport but they lack the physiological organization of neuronal networks, which in turn may bias observations. We previously developed a microfluidic platform to reconstruct a physiologically-relevant and functional corticostriatal network in vitro that is compatible with high-resolution videorecording of axonal trafficking. Here, using this system we report progressive changes in axonal transport kinetics of both dense core vesicles and mitochondria that correlate with network development and maturation. Interestingly, axonal flow of both types of organelles change in opposite directions, with rates increasing for vesicles and decreasing for mitochondria. Overall, our observations highlight the need for a better spatiotemporal control for the study of intracellular dynamics in order to avoid misinterpretations and improve reproducibility.
ATP-citrate lyase promotes axonal transport across species
Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD. Microtubule tracks are important for the transport of molecules within axons. Here, the authors show that ATAT1, the enzyme responsible for acetylating a-tubulin, receives acetyl groups from ATP citrate lyase whose stability is regulated by Elongator, a protein mutated in the neuronal disease Familial dysautonomia.
Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous. How neurons produce energy to fuel fast axonal transport is only partially understood. Authors here report that most glycolytic enzymes are enriched in motile vesicles, and such glycolytic machinery can produce ATP autonomously to propel vesicle movement along microtubules in a cell-free assay.
Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit
Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.
Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons
The transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein, respectively, which propel vesicles along microtubules (MTs). However, the mechanisms that determine the directionality of transport remain unclear. Huntingtin, the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport. Huntingtin is phosphorylated at serine 421 by the kinase Akt but the role of this modification is unknown. Here, we demonstrate that phosphorylation of wild‐type huntingtin at S421 is crucial to control the direction of vesicles in neurons. When phosphorylated, huntingtin recruits kinesin‐1 to the dynactin complex on vesicles and MTs. Using brain‐derived neurotrophic factor as a marker of vesicular transport, we demonstrate that huntingtin phosphorylation promotes anterograde transport. Conversely, when huntingtin is not phosphorylated, kinesin‐1 detaches and vesicles are more likely to undergo retrograde transport. This also applies to other vesicles suggesting an essential role for huntingtin in the control of vesicular directionality in neurons.