Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
140
result(s) for
"Saugel, Bernd"
Sort by:
How to measure blood pressure using an arterial catheter: a systematic 5-step approach
by
Saugel, Bernd
,
Schulte-Uentrop, Leonie
,
Kouz, Karim
in
Anesthesia
,
Arterial Pressure
,
Blood pressure
2020
Arterial blood pressure (BP) is a fundamental cardiovascular variable, is routinely measured in perioperative and intensive care medicine, and has a significant impact on patient management. The clinical reference method for BP monitoring in high-risk surgical patients and critically ill patients is continuous invasive BP measurement using an arterial catheter. A key prerequisite for correct invasive BP monitoring using an arterial catheter is an in-depth understanding of the measurement principle, of BP waveform quality criteria, and of common pitfalls that can falsify BP readings. Here, we describe how to place an arterial catheter, correctly measure BP, and identify and solve common pitfalls. We focus on 5 important steps, namely (1) how to choose the catheter insertion site, (2) how to choose the type of arterial catheter, (3) how to place the arterial catheter, (4) how to level and zero the transducer, and (5) how to check the quality of the BP waveform.
Journal Article
A novel art of continuous noninvasive blood pressure measurement
2021
Wearable sensors to continuously measure blood pressure and derived cardiovascular variables have the potential to revolutionize patient monitoring. Current wearable methods analyzing time components (e.g., pulse transit time) still lack clinical accuracy, whereas existing technologies for direct blood pressure measurement are too bulky. Here we present an innovative art of continuous noninvasive hemodynamic monitoring (CNAP2GO). It directly measures blood pressure by using a volume control technique and could be used for small wearable sensors integrated in a finger-ring. As a software prototype, CNAP2GO showed excellent blood pressure measurement performance in comparison with invasive reference measurements in 46 patients having surgery. The resulting pulsatile blood pressure signal carries information to derive cardiac output and other hemodynamic variables. We show that CNAP2GO can self-calibrate and be miniaturized for wearable approaches. CNAP2GO potentially constitutes the breakthrough for wearable sensors for blood pressure and flow monitoring in both ambulatory and in-hospital clinical settings.
Realizing wearable sensors for blood pressure (BP) monitoring with clinically-acceptable performance remains a significant challenge. Here, the authors report a continuous noninvasive blood pressure measurement system featuring a volume control technique for small wearable sensors.
Journal Article
Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice
by
Saugel, Bernd
,
Teboul, Jean-Louis
,
Scheeren, Thomas W. L.
in
Analysis
,
Anesthesiology
,
Carotid arteries
2017
The use of ultrasound (US) has been proposed to reduce the number of complications and to increase the safety and quality of central venous catheter (CVC) placement. In this review, we describe the rationale for the use of US during CVC placement, the basic principles of this technique, and the current evidence and existing guidelines for its use. In addition, we recommend a structured approach for US-guided central venous access for clinical practice. Static and real-time US can be used to visualize the anatomy and patency of the target vein in a short-axis and a long-axis view. US-guided needle advancement can be performed in an \"out-of-plane\" and an \"in-plane\" technique. There is clear evidence that US offers gains in safety and quality during CVC placement in the internal jugular vein. For the subclavian and femoral veins, US offers small gains in safety and quality. Based on the available evidence from clinical studies, several guidelines from medical societies strongly recommend the use of US for CVC placement in the internal jugular vein. Data from survey studies show that there is still a gap between the existing evidence and guidelines and the use of US in clinical practice. For clinical practice, we recommend a six-step systematic approach for US-guided central venous access that includes assessing the target vein (anatomy and vessel localization, vessel patency), using real-time US guidance for puncture of the vein, and confirming the correct needle, wire, and catheter position in the vein. To achieve the best skill level for CVC placement the knowledge from anatomic landmark techniques and the knowledge from US-guided CVC placement need to be combined and integrated.
Journal Article
Automated continuous noninvasive ward monitoring: future directions and challenges
by
Saugel, Bernd
,
Hoppe, Phillip
,
Khanna, Ashish K.
in
Analysis
,
Anoxemia
,
Artificial intelligence
2019
Automated continuous noninvasive ward monitoring may enable subtle changes in vital signs to be recognized. There is already some evidence that automated ward monitoring can improve patient outcome. Before automated continuous noninvasive ward monitoring can be implemented in clinical routine, several challenges and problems need to be considered and resolved; these include the meticulous validation of the monitoring systems with regard to their measurement performance, minimization of artifacts and false alarms, integration and combined analysis of massive amounts of data including various vital signs, and technical problems regarding the connectivity of the systems.
Journal Article
Techniques for Non-Invasive Monitoring of Arterial Blood Pressure
2018
Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP) is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation) or automatically (e.g., by oscillometry). For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.
Journal Article
On the assessment of the ability of measurements, nowcasts, and forecasts to track changes
2024
Background
Measurements, nowcasts, or forecasts ideally should correctly reflect changes in the values of interest. In this article, we focus on how to assess the ability of measurements, nowcasts, or forecasts to correctly predict the direction of changes in values - which we refer to as the ability to track changes (ATC).
Methods
We review and develop visual techniques and quantitative measures to assess ATC. Extensions for noisy data and estimation uncertainty are implemented using bootstrap confidence intervals and exclusion areas.
Results
We exemplarily illustrate the proposed methods to assess the ability to track changes for nowcasting during the COVID-19 pandemic, patient admissions to an emergency department, and non-invasive blood pressure measurements. The proposed methods effectively evaluate ATC across different applications.
Conclusions
The developed ATC assessment methods offer a comprehensive toolkit for evaluating the ATC of measurements, nowcasts, and forecasts. These techniques provide valuable insights into model performance, complementing traditional accuracy measures and enabling more informed decision-making in various fields, including public health, healthcare management, and medical diagnostics.
Journal Article
Intraoperative hypotension: Pathophysiology, clinical relevance, and therapeutic approaches
by
Saugel, Bernd
,
Hoppe, Phillip
,
Kouz, Karim
in
acute kidney injury
,
Anesthesia
,
Angiotensin II
2020
Intraoperative hypotension (IOH) i.e., low arterial blood pressure (AP) during surgery is common in patients having non-cardiac surgery under general anaesthesia. It has a multifactorial aetiology, and is associated with major postoperative complications including acute kidney injury, myocardial injury and death. Therefore, IOH may be a modifiable risk factor for postoperative complications. However, there is no uniform definition for IOH. IOH not only occurs during surgery but also after the induction of general anaesthesia before surgical incision. However, the optimal therapeutic approach to IOH remains elusive. There is evidence from one small randomised controlled trial that individualising AP targets may reduce the risk of postoperative organ dysfunction compared with standard care. More research is needed to define individual AP harm thresholds, to develop therapeutic strategies to treat and avoid IOH, and to integrate new technologies for continuous AP monitoring.
Journal Article
Effective hemodynamic monitoring
by
Monnet, Xavier
,
Teboul, Jean-Louis
,
Hamzaoui, Olfa
in
Abdomen
,
Abdominal surgery
,
Acute coronary syndromes
2022
Hemodynamic monitoring is the centerpiece of patient monitoring in acute care settings. Its effectiveness in terms of improved patient outcomes is difficult to quantify. This review focused on effectiveness of monitoring-linked resuscitation strategies from: (1) process-specific monitoring that allows for non-specific prevention of new onset cardiovascular insufficiency (CVI) in perioperative care. Such goal-directed therapy is associated with decreased perioperative complications and length of stay in high-risk surgery patients. (2) Patient-specific personalized resuscitation approaches for CVI. These approaches including dynamic measures to define volume responsiveness and vasomotor tone, limiting less fluid administration and vasopressor duration, reduced length of care. (3) Hemodynamic monitoring to predict future CVI using machine learning approaches. These approaches presently focus on predicting hypotension. Future clinical trials assessing hemodynamic monitoring need to focus on process-specific monitoring based on modifying therapeutic interventions known to improve patient-centered outcomes.
Journal Article
Mechanisms contributing to hypotension after anesthetic induction with sufentanil, propofol, and rocuronium: a prospective observational study
2022
It remains unclear whether reduced myocardial contractility, venous dilation with decreased venous return, or arterial dilation with reduced systemic vascular resistance contribute most to hypotension after induction of general anesthesia. We sought to assess the relative contribution of various hemodynamic mechanisms to hypotension after induction of general anesthesia with sufentanil, propofol, and rocuronium. In this prospective observational study, we continuously recorded hemodynamic variables during anesthetic induction using a finger-cuff method in 92 non-cardiac surgery patients. After sufentanil administration, there was no clinically important change in arterial pressure, but heart rate increased from baseline by 11 (99.89% confidence interval: 7 to 16) bpm (P < 0.001). After administration of propofol, mean arterial pressure decreased by 23 (17 to 28) mmHg and systemic vascular resistance index decreased by 565 (419 to 712) dyn*s*cm−5*m2 (P values < 0.001). Mean arterial pressure was < 65 mmHg in 27 patients (29%). After propofol administration, heart rate returned to baseline, and stroke volume index and cardiac index remained stable. After tracheal intubation, there were no clinically important differences compared to baseline in heart rate, stroke volume index, and cardiac index, but arterial pressure and systemic vascular resistance index remained markedly decreased. Anesthetic induction with sufentanil, propofol, and rocuronium reduced arterial pressure and systemic vascular resistance index. Heart rate, stroke volume index, and cardiac index remained stable. Post-induction hypotension therefore appears to result from arterial dilation with reduced systemic vascular resistance rather than venous dilation or reduced myocardial contractility.
Journal Article